ELECTROMAGNETIC INDUCTION

1.	17			V at the secondary coil. If the
	efficiency of the transfor	mer is 80%, the current of	drawn from the line is	
	a) 3 A	b) 30 A	c) 0.3 A	d) 2.4 A
2.	When a bar magnet falls	through a long hollow m	etal cylinder fixed with its	axis vertical, the final
	acceleration of the magn	net is		
	a) Equal to zero		b) Less than g	
	c) Equal to g		d) Equal to g in the be	eginning and then more than g
3.	The coils of a step down	transformer have 500 an	d 5000 turns. In the prima	ary coil an ac of 4 ampere at
	2200 volts is sent. The v	value of the current and p	otential difference in the s	secondary coil will be
	a) 20 A, 220 V	b) 0.4 A, 22000 V	c) 40 A, 220 V	d) 40 A, 22000 V
4.		The state of the s	A)	n 2200 V to 220 V. The power
	1.75	and its efficiency is 88%.		
	a) 4.65 mA	b) 0.045 A	c) 0.45 A	d) 4.65 A
5.	*			its secondary coil. If the current
~.		amp, then the current in	- 10	
	a) 1 amp	b) 4 amp	c) 8 amp	d) 16 amp
6.				field then which plate of the
	capacitor will be positiv		arrian and an and an agreement	p o
	× × → v			
	× × ×			
	A			
	× × × B			
	× × ×			
	a) Plate –A		b) Plate − <i>B</i>	
	c) Plate – A and Plate –	B both	d) None	
7.				and 10 respectively and the
		i i		s in the primary and secondary
		사는 사람들 아이들을 잃었는데 아이에 살았다. 날아가 모르네어서 아르네어를 내린 아들까?		of the transformer in henry wil
	be			,
	a) 6.25	b) 12.5	c) 25	d) 50
8.	§ 5	*	n.f. E, an inductance L and	-
			vith time according to cur	
			ncrease in current follows	
	- [[[[[[] [[] [[] [] [] [] [] [] [] [] []	BOOK TO THE STATE OF THE STATE	arameter was changed an	
	what direction	sea secona time. Winen p	arameter was enanged an	
	*			
	1			
	1//			
	// 2			
	/ ,			
	a) L is increased	b) L is decreased	c) R is increased	d) R is decreased
	a, b is mereasea	DJ D 15 deel cased	c) it is increased	a) It is accircused

9.	perpendicular to the field	ith a velocity 1ms ⁻¹ in a ma I. The emf induced in it will	be	
	a) 2 V	b) 1 V	c) 0.1V	d) 0.5 V
10.		p is placed in a uniform ma	4프로그리아 이번 100 HT 100 H	
		us of the loop starts shrink	ing at the rate $\left(\frac{dr}{dt}\right)$. Then, t	he induced emf at the
	instant when the radius i	53	JD.	(
	a) $\pi r B\left(\frac{dr}{dt}\right)$	b) $2\pi r B\left(\frac{dr}{dt}\right)$	c) $\pi r^2 \left(\frac{dB}{dt}\right)$	d) $\left(\frac{nr}{2}\right)B\left(\frac{ar}{dt}\right)$
11.	earth's magnetic field is (about a horizontal axis is	bund on a book and this book 0.6×10^{-4} T and the area of 0.1 s. This average emf ind	f the coil is 0.05 m^{-2} . The buced in the coil is	ook is turned over once
	a) 0.03 V	b) 0.06 V	c) Zero	d) 0.6 V
12.	a) Decreasing the numberc) Winding the coils on w		b) Increasing the number d) None of the above	of turns in the coils
13.	will generate a current ar	ng wires is rotated between nd this device is called b) An electric generator	an in the state of	W.W. 4.V. 4
14		rns of wire and its radius is	,	*
17.	a) 25×10^{-3} mH	b) 25 mH	c) 50×10^{-3} H	
15		th /is moving in a transvers	# 500	
13.	resistance of the rod is R.	filifika a menga sangga nagan mengalika mengilika mengan mengilikika menangan	te magnetic held of strength	1 D With velocity v. The
			c) Zero	$R^2 n^2 l^2$
	a) $\frac{Blv}{R}$	b) Blv	c) zero	d) $\frac{B^2v^2l^2}{R}$
16.	A .	nitude $B(t)$ of a uniform ma	agnetic field that exists thro	oughout a conducting loop.
	5 6 5	e of the loop. Rank the five	7-7	ding to the magnitude of the
	Β↑	,		
	a b c d e	⊷ t		
	a) $b > (d = e) < (a = c)$		b) $b > (d = e) > (a = c)$	
	c) $b < d < e < c < a$		d) $b > (a = c) > (d = e)$	
17.		g 10 ohm resistance and 5		a 10 volt battery. At steady
-73 (1.5)		the solenoid in ampere wi	일 기업을 이 이 이 아이지 않게 한 나를 하고 있다. 이 아이는 아이를 하는 것이 아이지 않게 하고 있다.	
	a) 5	b) 1	c) 2	d) Zero
18.				a speed of 5.0ms ⁻¹ ,at right
	angles to the horizontal of	omponent of the earth's ma	agnetic field 0.030 ×	,,
		nneous value of the emf ind		J) 1 F V
10	a) 6.0 mV	b) 3 mV	c) 4.5 mV	d) 1.5 mV
19.	current of 10 A is cut-off	in 5×10^{-4} s, the emf induc	ted (in volt) in the seconda	n induction coils is 5 H and ary coil is
	a) 5×10^4	b) 1×10^5	c) 25×10^5	d) 5×10^6

20. In the circuit shown below, the key K is closed at t=0. The current through the battery is

a)
$$\frac{V(R_1+R_2)}{R_1R_2}$$
 at $t=0$ and $\frac{V}{R_2}$ at $t=\infty$

b)
$$\frac{V(R_1+R_2)}{\sqrt{R_1^2R_2^2}}$$
 at $t = 0$ and $\frac{V}{R_2}$ at $t = \infty$

c)
$$\frac{V}{R_2}$$
 at $t = 0$ and $\frac{V(R_1 + R_2)}{R_1 R_2}$ at $t = \infty$

d)
$$\frac{v}{R_2}$$
 at $t = 0$ and $\frac{V(R_1 + R_2)}{\sqrt{R_1^2 R_2^2}}$ at $t = \infty$

21. An transformer is employed to reduce 220 V to 11 V. The primary draws a current of 5 A and the secondary 90 A. The efficiency of the transformer is

b) 40%

c) 70%

d) 90%

22. Which of the following phenomena is utilised in the construction of mouth piece of a telephone now a days?

a) Thermo electric effect

b) Photo electric effect

c) Change of resistance with pressure

- d) Electromagnetic induction
- 23. Two circuits have coefficient of mutual induction of 0.09 henry. Average e.m.f. induced in the secondary by a change of current from 0 to 20 ampere in 0.006 second in the primary will be

a) 120 V

b) 80 V

c) 200 V

d) 300 V

24. The particle accelerator that uses the phenomenon of electromagnetic induction is the

a) Cyclotron

b) Betatron

c) Van de Graff generator

- d) Cockroft- Walton generator
- 25. At a place the value of horizontal component of the earth's magnetic field H is 3×10^{-5} weber/ m^2 . A metallic rod AB of length 2 m placed in east-west direction, having the end A towards east, falls vertically downward with a constant velocity of 50 m/s. Which end of the rod becomes positively charged and what is the value of induced potential difference between the two ends

a) End A, $3 \times 10^{-3} mV$

- b) End A, 3 mV
- c) End B, $3 \times 10^{-3} \, mV$
- d) End B, 3 mV
- 26. The number of turns in the coil of an ac generator is 5000 and the area of the coil is $0.25m^2$. The coil is rotated at the rate of 100 cycles/sec in a magnetic field of 0.2 W/m^2 . The peak value of the emf generated is nearly

a) 786 kV

- b) 440 kV
- c) 220 kV
- d) 157.1 kV
- 27. A rectangular loop of sides 10 cm and 5 cm with a cut is stationary between the pole pieces of an electromagnet. The magnetic field of the magnet is normal to the loop. The current feeding the electromagnet is reduced so that the field decreased from its initial value of 0.3 T at the rate of 0.02 Ω . If the cut is joined and the loop has a resistance of 2.0 Ω , the power dissipated by the loop as heat is

- b) 4 nW
- c) 3 nW
- 28. An axle of truck is 2.5 m long. If the truck is moving due north at 30 ms⁻¹ at a place where the vertical component of the earth's magnetic field is $90\mu T$, the potential difference between the two ends of the axle

a) 6.75 mV with west end positive

b) 6.75 mV with east end positive

c) 6.75 mV with north end positive

- d) 6.75 mV with south end positive
- 29. A square loop of side 22 cm is converted into circular loop in 0.4s. A uniform magnetic field of 0.2 T directed normal to the loop then the emf induced in the loop is

a) $6.6 \times 10^{-3} V$

- b) $6.6 \times 10^{-5} V$
- c) $4.6 \times 10^{-4} V$
- d) $4.60 \times 10^{-8} V$
- 30. A conducting rod of length l is falling with a velocity v perpendicular to a uniform horizontal magnetic field B. The potential difference between its two ends will be

a) 2Blv

b) Blv

- c) $\frac{1}{2}Blv$

31.	Two pure inductors each other. The total inductance		nnected in parallel but are v	well separated from each
	a) 2 <i>L</i>	b) <i>L</i>	c) $\frac{L}{2}$	d) $\frac{L}{4}$
32.	A nhysicist works in a lah		ic field is 2T. She wears a ne	ecklace enclosing area
02.			is normal to the field and is	
		일반 사용 경기 전에 ¹⁹ 이 나는 아이를 가면 하는 것이 되었다. 그 없는 것이 되어 나를 하는 것이다. 네트리스 아이를 다 보다 하는 것이다.	$1T$ in time 10^{-3} seconds. The seconds is 1 and 1 and 1 and 1 are 1 are 1 and 1 are 1 and 1 are 1 and 1 are 1 and 1 are 1 and 1 are 1 are 1 and 1 are 1 and 1 are 1 and 1 are 1 are 1 and 1 are 1 and 1 are 1 are 1 and 1 are 1 and 1 are 1 and 1 are 1 are 1 and 1 are 1 are 1 and 1 are 1 are 1 and 1 ar	[2010] M. M. H.
	produced in her necklace		17 m time 10 seconds. 11	non what is the total near
	a) 10 <i>J</i>	b) 20 /	c) 30 /	d) 40 <i>J</i>
33.			ane of the coil is placed at i	
				average emf induced in the
	coil, in mV, is			•
	a) 5	b) 10	c) 15	d) 20
34.	A coil having 500 turns of	square shape each of side	10 cm is placed normal to i	magnetic field which is
	increasing at $1 \mathrm{Ts^{-1}}$. The	induced emf is		
	a) 0.1 V	b) 0.5 V	c) 1 V	d) -5 V
35.	The current in a LR circui	t builds up to 3/4th of its st	eady state value in 4s. The	time constant of this circuit
	is	SEO	820	502
	a) $\frac{1}{\ln 2}s$	b) $\frac{2}{\ln 2}s$	c) $\frac{3}{s}$	d) $\frac{4}{\ln 2}$ s
	111 4	111 2	111 4	111 2
30.			one of the pair of coils. If the alue of voltage induced in t	
	a) $30 \pi V$	b) 60 π V	c) 15 π V	d) 300 π V
37			e long. Its cross-sectional a	•
57.	inductance is	ooo turns and is one men	e long, its cross sectional a	rea is to em the sen
	a) 0.1256 mH	b) 12.56 mH	c) 1.256 mH	d) 125.6 mH
38.		AND SECTION OF CONTRACT STATES OF STATES OF STATES	ole faces of an electromagn	
		1,000	rpendicular to B and movi	//8
	magnetic induction and it	s own length with a velocit	y 2 m/sec is	
	a) 0.08 V	b) 0.14 V	c) 0.35 V	d) 0.07 V
39.		changed in a transformer is		
		b) Current	c) Frequency	d) None of these
40.	(T)	not an application of eddy		
	a) Induction furnace	3.0	b) Galvanometer damping	g
41	c) Speedometer of autom		d) X-ray crystallography	
41.	ranger from the company of the first of the first of the first of the company of the first of the first of the	and the standing with the contract of the same and same the standard of the contribution of the same and the s	enz's law. The arrows show	circle show the direction of
	the induced current	net into a closed circular it	oop and the arrows on the c	incle show the direction of
	the madeca current			
	(مسمعه)	(, , , , ,)	(,,,,,)	(منسو)
	a)	b)	c)	d)
	in in	, N)	137	(S)
42.	A coil having an area A_0 is	s placed in a magnetic field	which changes from B_0 to	$4B_0$ in a time interval t . The
	e.m.f. induced in the coil v	vill be		
	a) $\frac{3A_0B_0}{t}$	b) $\frac{4A_0B_0}{t}$	c) $\frac{3B_0}{A_0t}$	d) $\frac{4B_0}{A_0t}$
	$\frac{t}{t}$	0) — t	A_0t	A_0t
43.	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	한 경기 열 하나 되면 있었다. 하면 보면 하고 있는 나라 하고 가지 않는 아이는 것 같아.	ng e.m.f. of 220 V to 11 kV t	
			e current rating of the seco	ndary? Assume 100%
	efficiency for the transfor		2 0 0 4 7	12.0.0.4
	a) 4 A	b) 0.4 A	c) 0.04 A	d) 0.2 A

44.	The ratio of secondary to (neglect all losses) to po		ower input is <i>P</i> , what will b	e the ratio of power output
	a) 4:9	b) 9:4	c) 5:4	d) 1:1
45.	A transformer has an ef	ficiency of 80%. It is connec	cted to a power input of 5k	W at 200 V. If the secondary
	voltage is 250 V, the prin	nary and secondary current	ts are respectively	
	a) 25 A, 20 A	b) 20 A, 16 A	c) 25 A, 16 A	d) 40 A, 25 A
46.	The self induced emf in	a coils of 0.4 henry self indu	ctance when current in it is	s changing at the rate of
	50As-1, is			
	a) $8 \times 10^{-4} \text{V}$	b) $8 \times 10^{-3} \text{V}$	c) 200 V	d) 500 V
47.	In a step-up transformer	the voltage in the primary	is 220 V and the current is	5A. The secondary voltage
	is found to be 22000V. T	he current in the secondary	y (neglect losses) is	
	a) 5 A	b) 50 A	c) 500 A	d) 0.05 A
48.	There is a uniform magr	etic field directed perpendi	icular and into the plane of	the paper. An irregular
	shaped conducting loop	is slowly changing into a cir	rcular loop in the plane of t	he paper. Then
	a) Current is induced in	the loop in the anticlockwis	se direction	
	b) Current is induced in	the loop in the clockwise di	rection	
	c) AC is induced in the le	оор		
	d) No current is induced	in the loop		
49.	If a current of 10 A flows	s in one second through a co	oil, and the induced e.m.f. is	10 <i>V</i> , then the self-
	inductance of the coil is			
	a) $\frac{2}{5}H$	b) $\frac{4}{5}H$	c) $\frac{5}{4}H$	d) 1 H
	5	3	- T	201
50.				of $1.2 \times 10^{-2} Wb$ in the other
		uctance of the two coils in h	: 20 (200) (1) (200) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	
	a) 0	b) 0.5	c) 1.2	d) 3
51.	and the state of t	es from +2 A to -2 A in 0.05	s, an emf of 8 V is induced	in a coil. The coefficient of
	self-induction of the coil			
	a) 0.2 H	b) 0.4 H	c) 0.8 H	d) 0.1 H
52.	14 To 17 To	ary coils of a transformer h	175	
		rimary coil is given by $\phi =$		er, t is time in second and
		out voltage across the secon		1027-0228-00
		b) 120 V	and the second s	d) 30V
53.		l inductance of two coils is	6 mH. If the current flowing	g in one is 2 <i>ampere</i> , then
	the induced e.m.f. in the			
	a) 3 mV	b) 2 <i>mV</i>	c) 3 <i>V</i>	d) Zero
54.		or has 20Ω resistance. It dra	AT INDIVIDUAL PROPERTOR AND POST OF A PART OF A PA	vhen run by 220 <i>volts</i> dc
		k e.m.f. induced in it will be		
	a) 150 V	b) 170 <i>V</i>	c) 180 V	d) 190 <i>V</i>
55.	In an induction coil, the			10.1H-1442-194-01004-04004-04004
	a) Zero during break of		b) Very high during make	
	c) Zero during make of t		d) Very high during brea	
56.		h 4 cm, radius 2 cm and 10		
		and 1500 turns. A current	of 3 A flows through the sh	ort solenoid. The mutual
	inductance of two solen		2	
	a) 2.96×10^{-4} H	b) 5.3×10^{-5} H	c) 3.52×10^{-3} H	d) 8.3×10^{-5} H
57.	- : () 그리고 하고 있다면 하다는 그래요 아이트 그리고 하는 것 같아 된다. 그리고 하는 하는 사람들이 되었다.	d in and out of a circular co	Name :	istitive galvanometer G as
	shown in the adjoining of	liagram with a frequency \emph{v} ,	then	

CLICK HERE >>>

- a) Constant deflection is observed in the galvanometer
- b) Visible small oscillations will be observed in the galvanometer if v is about 50 Hz
- c) Oscillations in the deflection will be observed clearly if v = 1 or 2 Hz
- d) No variation in the deflection will be seen if v = 1 or 2 Hz
- 58. The north pole of a long horizontal bar magnet is being brought closer to a vertical conducting plane along the perpendicular direction. The direction of the induced current in the conducting plane will be
 - a) Horizontal
- b) Vertical
- c) Clockwise
- d) Anticlockwise
- 59. Two different loops are concentric and lie in the same plane. The current in the outer loop is clockwise and increasing with time. The induced current in the inner loop then, is
 - a) Clockwise

b) Zero

c) Counter clockwise

- d) In a direction that depends on the ratio of the loop radii
- 60. The wing span of an aeroplane is 20 metre. It is flying in a field, where the vertical component of magnetic field of earth is 5×10^{-5} tesla, with velocity 360 km/h. The potential difference produced between the blades will be
 - a) 0.10 V
- b) 0.15 V
- c) 0.20 V
- d) 0.30 V
- 61. The figure shows certain wire segments joined together to form a coplanar loop. The loop is placed in a perpendicular magnetic field in the direction going into the plane of the figure. The magnitude of the field increases with time. I_1 and I_2 are the currents in the segments ab and cd. Then,

- a) $I_1 > I_2$
- b) $I_1 < I_2$
- c) I_1 is in the direction ba and I_2 is in the direction cd
- d) I_1 is in the direction ab and I_2 is in the direction dc
- 62. A simple pendulum with bob of mass m and conducting wire of length L swings under gravity through an angle 2 θ . The earth's magnetic field component in the direction perpendicular to swing is B. Maximum potential difference induced across the pendulum is

- a) $2 BL \sin\left(\frac{\theta}{2}\right) (gL)^{1/2}$ b) $BL \sin\left(\frac{\theta}{2}\right) (gL)$ c) $BL \sin\left(\frac{\theta}{2}\right) (gL)^{3/2}$ d) $BL \sin\left(\frac{\theta}{2}\right) (gL)^2$
- 63. Two circular coils have their centres at the same point. The mutual inductance between them will be maximum when their axes
 - a) Are parallel to each other

b) Are at 60° to each other

c) Are at 45° to each other

d) Are perpendicular to each other

64.				s length and in a homogenous sistance 6 Ω . The rate at which
	work is being do a) $\frac{1}{12}$ W	one to keep the wire moving b) $\frac{1}{6}$ W	at constant speed is c) $\frac{1}{3} W$	d) 1 <i>W</i>
65.	horizontal comp	tor of length 1 m rotates vert ponent of earth's magnetic fi en the emf developed betwee	eld is	s at angular velocity 5 rad/s. If the or is
	a) 5 μV	b) 5 mV	c) 50 µV	d) 50 mV

- 66. If in a coil rate of change of area is $\frac{5 \text{ metre}^2}{\text{milli second}}$, current becomes 1 amp form 2 amp in 2 × 10⁻³ sec magnetic field is 1 tesla, then self inductance of the coil is
- a) 2*H* b) 5 *H* c) 20 *H* d) 10 *H* The north pole of a long bar magnet was pushed slowly into a short solenoid connected to a galvanometer.
 The magnet was held stationary for a few seconds with the north pole in the middle of the solenoid and then withdrawn rapidly. The maximum deflection of the galvanometer was observed when the magnet
 - a) Moving towards the solenoid
 b) Moving into the solenoid
 c) At rest inside the solenoid
 d) Moving out of the solenoid
- 68. Which of the following is constructed on the principle of electromagnetic induction
 a) Galvanometer b) Electric motor c) Generator d) Voltmeter
- 69. A highly conducting ring of radius R is perpendicular to and concentric with the axis of a long solenoid as shown in fig. The ring has a narrow gap of width d in its circumference. The solenoid has cross sectional area A and a uniform internal field of magnitude B_0 . Now beginning at t=0, the solenoid current is steadily increased so that the field magnitude at any time t is given by $B(t)=B_0+\alpha t$ where a>0. Assuming that no charge can flow across the gap, the end of ring which has excess of positive charge and the magnitude of induced e.m.f. in the ring are respectively

a) $X, A\alpha$ b) $X, \pi R^2 \alpha$ c) $Y, \pi A^2 \alpha$ d) $Y, \pi R^2 \alpha$

70. A copper disc of radius 0.1 m is rotated about its centre with 20 rev - s⁻¹ in a uniform magnetic field of 0.1 T with its plane perpendicular to the field. The emf induced across the radius of the disc is

a) $\frac{\pi}{20}$ V b) $\frac{\pi}{10}$ V c) 20π mV d) 10π mV

71. Two conducting circular loops of radii R_1 and R_2 are placed in the same plane with their centres coinciding. If $R_1 \gg R_2$, the mutual inductance M between them will be directly proportional to a) R_1/R_2 b) R_2/R_1 c) R_1^2/R_2 d) R_2^2/R_1

72. A movable wire is moved to the right crossing an anti-clock-wise induced current, figure. The direction of magnetic induction in the region P points

a) To the right
b) To the left
c) Up the paper
d) Down into the paper

73. The transformation ratio in the step-up transformer is a) One

- b) Greater than one
- c) Less than one
- d) The ratio greater or less than one depends on the other factors
- 74. Two coils *A* and *B* having turns 300 and 600 respectively are placed near each other, on passing a current of 3.0 *ampere* in *A*, the flux linked with *A* is 1.2×10^{-4} weber and with *B* it is 9.0×10^{-5} weber. The mutual inductance of the system is
 - a) $2 \times 10^{-5} henry$
- b) $3 \times 10^{-5} henry$
- c) $4 \times 10^{-5} henry$
- d) $6 \times 10^{-5} henry$

- 75. Faraday's laws are consequence of conservation of
 - a) Energy

b) Energy and magnetic field

c) Charge

- d) Magnetic field
- 76. The oscillating frequency of a cyclotron is 10 MHz. If the radius of its dees is 0.5 m, the kinetic energy of a proton, which is accelerated by the cyclotron is
 - a) 10.2 MeV
- b) 2.55 MeV
- c) 20.4 MeV
- d) 5.1 MeV
- 77. The magnetic flux across a loop of resistance 10Ω is given by $\phi = 5t^2 4t + 1$ weber. How much current is induced in the loop after 0.2 sec
 - a) 0.4 A
- b) 0.2 A
- c) 0.04 A
- d) 0.02 A
- 78. The resistance and inductance of series circuit are 5Ω and 20H respectively. At the instant of closing the switch, the current is increasing at the rate 4A/s. The supply voltage is
 - a) 20 V
- b) 80 V
- c) 120 V
- d) 100 V
- 79. The north and south poles of two identical magnets approach a coil, containing a condenser, with equal speeds from opposite sides. Then

- a) Plate 1 will be negative and plate 2 positive
- b) Plate 1 will be positive and plate 2 negative
- c) Both the plates will be positive
- d) Both the plates will be negative
- 80. An aluminium ring B faces an electromagnet A. The current I through A can be altered

- a) Whether I increases or decreases, B will not experience any force
- b) If I decreases A will attract B
- c) If I increases, A will attract B
- d) If I increases, A will repel B
- 81. A coil of wire of a certain radius has 600 turns and a self inductance of 108 *mH*. The self inductance of a 2nd similar coil of 500 turns will be
 - a) 74 mH
- b) 75 mH
- c) 76 mH
- d) 77 mH
- 82. A copper ring having a cut such as not to form a complete loop is held horizontally ad a bar magnet is dropped through the ring with its length along the axis of the ring, figure. The acceleration of the falling magnet is

a) G

- b) Less than g
- c) More than g
- d) Zero
- 83. A short-circulated coil is placed in a time-varying magnetic field. Electrical power is dissipated due to the current induced in the coil. If the number of turns were to be quadrupled and the wire radius halved, the electrical power dissipated would be

a) Halved

- b) The same
- c) Doubled
- d) Quadrupled
- 84. An ideal transformer has 100 turns in the primary and 250 turns in the secondary. The peak value of the ac is 28 V. The r.m.s. secondary voltage is nearest to

- b) 70 V
- c) 100 V
- d) 40 V
- 85. A wheel with ten metallic spokes each 0.50 m long is rotated with a speed of 120 rev/min in a plane normal to the earth's magnetic field at the place. If the magnitude of the field is 0.4 gauss, the induced e.m.f. between the axle and the rim of the wheel is equal to

a) $1.256 \times 10^{-3}V$

- b) $6.28 \times 10^{-4}V$
- c) $1.256 \times 10^{-4}V$
- d) $6.28 \times 10^{-5}V$
- 86. A rectangular loop is being pulled at a constant speed v, through a region of certain thickness d, in which a uniform magnetic field B is set up. The graph between position x of the right hand edge of the loop and the induced emf E will be

a) E

- 87. If the current is halved in a coil, then the energy stored is how much times the previous value
 - a) $\frac{1}{2}$

b) $\frac{1}{4}$

- d) 4
- 88. The self-inductance of the motor of an electric fan is 10 H. In order to impart maximum power at 50 Hz, it should be connected to a capacitance of

- b) 8 µF
- c) 1 µF
- d) 2 µF
- 89. An electric motor operates on a 50 volt supply and a current of 12A. If the efficiency of the motor is 30%, what is the resistance of the winding of the motor

- c) 2.9 \Omega
- d) 3.1Ω
- 90. The total charge, induced in a conducting loop, when it is moved in a magnetic field depends on
 - a) Rate of change of magnetic on

- b) Initial magnetic flux only
- c) Total change in magnetic flux and resistance
- d) Final magnetic flux only
- 91. A transformer rated at 10k W is used to connect a 5 kV transmission line to a 240 V circuit. The ratio of turns in the windings of the transformer is
 - a) 5

- b) 20.8
- c) 104
- d) 40
- 92. The resistance in the following circuit is increased at a particular instant. At this instant the value of resistance is 10Ω . The current in the circuit will be

- a) i = 0.5 A
- b) i > 0.5 A
- c) i < 0.5 A
- d) i = 0
- 93. If rotational velocity of a dynamo armature is doubled, then induced e.m.f. will become
- b) Two times
- c) Four times
- d) Unchanged
- 94. A step-down transformer is connected to 2400 volts line and 80 amperes of current is found to flow in output load. The ratio of the turns in primary and secondary coil is 20:1. If transformer efficiency is 100%, then the current flowing in primary coil will be
 - a) 1600 A
- b) 20 A
- c) 4 A

- d) 1.5 A
- 95. Flux ϕ (in weber) in a closed circuit of resistance 20Ω varies with time t (in second) according to equation $\phi = 6t^2 - 5t + 1$.

The magnitude of the induced current at t=0.25 s is

- b) 0.8 A
- c) 0.6 A
- d) 0.1 A
- 96. In an ideal transformer the number of turns of primary and secondary coil is given as 100 and 300 respectively. If the power input is 60 W, the power output is
- b) 300 W
- c) 180 W
- d) 60 W
- 97. In the diagram shown if a bar magnet is moved along the common axis of two single turn coils A and B in the direction of arrow

- a) Current is induced only in A & not in B
- b) Induced currents in A & B are in the same direction
- c) Current is induced only in B and not in A
- d) Induced currents in A & B are in opposite directions
- 98. A 10 metre wire kept in east-west direction is falling with velocity 5m/sec perpendicular to the field $0.3 \times$ $10^{-4}Wb/m^2$. The induced e.m.f. across the terminal will be
 - a) 0.15 V
- b) 1.5 mV
- d) 15.0 V
- 99. A circular coil of diameter 21 cm is placed in a magnetic field of induction 10-4 T. the magnitude of flux linked with coil when the plane of coil makes an angle 30° with the field is
 - a) 1.44×10^{-6} Wb
- b) 1.732×10^{-6} Wb
- c) 3.1×10^{-6} Wb
- d) 4.2×10^{-6} Wb
- 100. The adjoining figure shows two bulbs B_1 and B_2 , resistor R and an inductor L. When the switch S is turned

- a) Both B_1 and B_2 die out promptly
- b) Both B_1 and B_2 die out with some delay
- c) B_1 dies out promptly but B_2 with some delay
- d) B_2 dies out promptly but B_1 with some delay
- 101. The mutual inductance between two coils is 1.25 henry. If the current in the primary changes at the rate of 80 ampere/second, then the induced e.m.f. in the secondary is
 - a) 12.5 V
- b) 64.0 V
- c) 0.016 V
- d) 100.0 V

102. An electron moves along the line PQ which lies in the same plane as a circular loop of conducting wire as shown in figure. What will be the direction of the induced current in the loop?

a) Anticlockwise

b) Clockwise

c) Alternating

d) No current will be induced

103. A coil of area 80 *square cm* and 50 turns is rotating with 2000 *revolutions per minute* about an axis perpendicular to a magnetic filed of 0.05 *tesla*. The maximum value of the e.m.f. developed in it is

- a) 200 π volt
- b) $\frac{10\pi}{3}$ volt
- c) $\frac{4\pi}{3}$ volt
- d) $\frac{2}{3}$ volt

104. A motor having an armature of resistance 2Ω is designed to operate at 220 V mains. At full speed, it develops a back e.m.f. of 210 V. When the motor is running at full speed, the current in the armature is

a) 5A

- b) 105A
- c) 110A
- d) 215A

105. If the number of turns in a coil becomes doubled, then it self inductance will be

- a) Double
- b) Halved
- c) Four times
- d) Unchanged

106. The current through a 4.6 H inductor is shown in the following graph. The induced emf during the time interval $t = 5 \ milli - sec$ to $6 \ milli - sec$ will be

- a) $10^3 V$
- b) $-23 \times 10^3 V$
- c) $23 \times 10^3 V$
- d) Zero

107. The current i in an induction coil varies with time t according to the graph shown

in figure. Which of the following graphs shows the induced $\operatorname{emf}(e)$ in the coil with time

a) £

108. A conducting ring of radius 1 *meter* is placed in an uniform magnetic field *B* of 0.01*telsa* oscillating with frequency 100*Hz* with its plane at right angles to *B*. What will be the induced electric field

- a) π volt/m
- b) 2 volt/m
- c) 10 volt/m
- d) 62 volt/m

109. A capacitor is fully charged with a battery. Then the battery is removed and a coil is connected with the capacitor in parallel, current varies as

a) Increases monotonically

b) Decreases monotonically

c) Zero

d) Oscillates indefinitely

110. Two coils are placed close to each other. The mutual inductance of the pair of coils depends upon

- a) The rates at which currents are changing in the two coils
- b) Relative position and orientation of the two coils
- c) The materials of the wires of the coils
- d) The currents in the two coils

111. Shown in the figure is a circular loop of radius r and resistance R. A variable magnetic field of induction $B = B_0 e^{-t}$ is established inside the coil. If the key (K) is closed, the electrical power developed right after closing the switch is equal to

a) $\frac{B_0^2 \pi r^2}{R}$

b) $\frac{B_0 10r^3}{R}$

c) $\frac{B_0^2 \pi^2 r^4 R}{5}$

 $d)\frac{B_0^2\pi^2r^4}{R}$

112. An aircraft with a wing-span of 40 m files with a speed of 1080 km h^{-1} in the eastward direction at the constant altitude in the northern hemisphere, where the vertical component of earth's magnetic field is 1.75×10^{-5} T. Then the emf that develops between the tips of the wings is

a) 0.5 V

b) 0.35 V

c) 0.21 V

d) 2.1 V

113. A metal of radius 100 cm is rotated at a constant angular speed of 60 rads⁻¹ in a plane at right angles to an external field of magnetic induction 0.05 Wbm⁻². The emf induced between between the centre and a point on the rim will be

a) 3 V

b) 1.5 V

c) 6 V

114. The current is flowing in two coaxial coils in the same direction. On increasing the distance between the two, the electric current will

a) Increase

b) Decrease

c) Remain unchanged

d) The information is incomplete

115. The number of turns in primary coil of a transformer is 20 and the number of turns in the secondary is 10. If the voltage across the primary is 220 V, what is the voltage across the secondary?

a) 110 V

b) 130 V

c) 190 V

d) 310 V

116. The network shown in the figure is a part of a complete circuit. If at a certain instant the current i is 5 A and is decreasing at the rate of $10^3 A/s$ then $V_A - V_B$ is

a) 5 V

b) 10 V

c) 15 V

d) 20 V

117. According to Lenz's law of electromagnetic induction

a) The induced emf is not in the direction opposing the change in magnetic flux.

b) The relative motion between the coil and magnet produces change in magnetic flux

c) Only the magnet should be moved towards coil

d) Only the coil should be moved towards magnet

118. If the switch in the following circuit is turned off, then

a) The bulb B_1 will go out immediately whereas B_2 after sometimes

b) The bulb B_2 will go out immediately whereas B_1 after sometime

c) Both B₁ and B₂ will go out immediately

d) Both B_1 and B_2 will go out after sometime

119. A transformer is employed to

a) Obtain a suitable dc voltage

b) Convert dc into ac

c) Obtain a suitable ac voltage

d) Convert ac into ac

120. In step-up transformer, relation between number of turns in primary (N_p) and number of turns is secondary (N_s) coils is

a) N_s is greater than N_p b) N_p is greater than N_s c) N_s is equal to N_p

d) $N_p = 2N_s$

121. A coil of $N=100$ turns carries a current $J=5$ A and	creates a magnetic flux φ =	$10^{-5} \mathrm{Tm^2}$ per turn. The
value of its inductance L will be a) 0.05 mH b) 0.10 mH	c) 0.15 mH	d) 0.20 mH
122. Core of transformer is made up of	c) 0.13 mm	u) 0.20 mm
a) Soft iron b) Steel	c) Iron	d) Alnico
123. Eddy currents are produced when		
a) A metal is kept in varying magnetic field		
b) A metal is kept in the steady magnetic field		
c) A circular coil is placed in a magnetic field		
d) Through a circular coil, current is passed		
124. In a transformer the primary has 500 <i>turns</i> and sec primary coil, the voltage developed in the secondar		voits is applied to the
a) 1 V b) 10 V	c) 1000 V	d) 10000 V
125. For a large industrial city with much load variations		501 5 5010000000000000000000000000000000000
a) Series b) Shunt wound	c) Mixed wound	d) Any
126. Find out the e.m.f. produced when the current chan	ges from 0 to 1 A in 10 seco	ond, given $L=10~\mu H$
a) 1 V b) 1 μV	c) 1 mV	d) 0.1 <i>V</i>
127. A magnet is made to oscillate with a particular frequency time variation of the magnitude of e.m.f. generated		
5 N. 0000	het verkritet hat i freeds freede 2 seu de 15 km en ee staat om meer oe ui t 2 de met ee staat en te	#ON MICH STOROGOP
N		
1999		
	© T	88 P
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	c)	d)
128. A coil has an inductance of 2.5 H and a resistance of	f $0.5 r$. If the coil is suddenly	y connected across a
6.0 volt battery, then the time required for the curr		
a) 3.5 sec b) 4.0 sec	c) 4.5 sec	d) 5.0 sec
129. A rectangular, a square, a circular and an elliptical l		
uniform magnetic field with a constant velocity \vec{V} = axis direction. The induced emf , during the passage		
constant for	e of these loops, out of the f	ieid region, win not remain
a) The rectangular, circular and elliptical loops	b) The circular and the e	lliptical lops
c) Only the elliptical loop	d) Any of the four loops	990 * m sett 6 8336, 300 * 893
130. In what form is the energy stored in an inductor ${f or}$		
A coil of inductance L is carrying a steady current i .		ored energy
a) Magnetic	b) Electrical	
c) Both magnetic and electrical	d) Heat	with its plans
131. A circular metal plate of radius <i>R</i> is rotating with a perpendicular to a uniform magnetic field <i>B</i> . Then t	이 없는 사람들이 보면 하는 것이 되었다면 하는 것이 되었다. 그는 그는 것이 없는 사람들이 되었다면 하는 것이 없다면	2011 P. CARL CONTROL (#2010 10 10 40 10 10 10 10 10 10 10 10 10 10 10 10 10
the plate is	ne emi developed between	the tentre and the rim of
a) $\pi \omega B R^2$ b) $\omega B R^2$	c) $\pi \omega BR^2/2$	d) $\omega BR^2/2$
(47)	c) nwbn / L	
132. There is an arial 1 m long in a car. It is moving from		y of $100 \mathrm{kmh^{-1}}$. If the
horizontal component of earth's magnetic field is 0.	east to west with a velocity 18 gauss, this induced emf	is nearly
	east to west with a velocity	
horizontal component of earth's magnetic field is 0.	east to west with a velocity 18 gauss, this induced emf	is nearly

133.	The current from A to B is	s increasing in magnitude.	What is the direction of inc	luced current, if any, in the
	loop shown in figure.			
	$A \longrightarrow B$			
	a) No current is induced		b) Clock-wise current	
	c) Anti-clock-wise curren	t	d) Alternating current	
134.		of increasing current, the	nagnitude of current can b	e calculated by using the
	formula	Statement Provided (SPORAL ASSOCIATION	25 77 10 1000 newspapers	valuation in the second
		b) $I = I_0(1 - e^{-Rt/L})$		
135.	The current in a coil chang is the self inductance of the		in 0.1 s. If the average e.m.	f. induced is 100 <i>volt</i> , what
	a) 2.5 H	b) 25 <i>H</i>	c) 400 H	d) 40 H
136.		,	,	changes and the number of
100.		o changes. Which of the fol	and the state of t	
	마을 하면 있다면 하는 하면 보다 보고 있다면 하면 하면 하는 것이 되었다. 이 이 사람은 아니는 이 사람이 되었다.	n but induced e.m.f. is zero	0	
		n but induced e.m.f. is zero		
	c) Lines of force maximur	n but induced e.m.f. is not z	ero	
	d) Lines of force maximur	n but induced e.m.f. is also	maximum	
137.	A coil of inductance 300 n	nH and resistance 2Ω is cor	nnected to a source of volta	ge 2V. The current reaches
	half of its steady state value	ue in		
	a) 0.15 s	b) 0.3 s	c) 0.05 s	d) 0.1 s
138.			NO 5 5	each other. 3 A and 4 A are
	will be	ch coil respectively. The ma	agnetic induction in Wb/m	² at the centre of the coils
	$(\mu_0 = 4\pi \times 10^{-7} Wb/Am)$			
	a) 12×10^{-5}	b) 10 ⁻⁵	c) 5×10^{-5}	d) 7×10^{-5}
139.				ected and pure 40 mH coil is
		acitor so that LC oscillations		
1.10	a) 0.2 <i>A</i>	b) 40 mA	c) 2 A	d) 0.4 A
140.	electromotive force, induc	nagnet is moved with a fast ced current and induced ch the incorrect statement is	THE STORY OF THE PROPERTY OF T	
	N $S \rightarrow $			
	(G)			
	a) E increases	b) I increases	c) Q remains same	d) Q increases
141.				ld of intensity $10^3 Wb/m^2$.
	The magnetic flux through		to a annorm magnetic ne	id of intensity to thopine.
	a) 10 weber	b) 10 ⁻⁵ weber	c) 10 ⁵ weber	d) 100 weber
142.	역사 통기 (1980년 1일	rent of 2 A, the energy stor		7.75
	a) 1	b) 0.05	c) 10	d) 0.1
143.		ed to a transformer. The ou	tput circuit draws a currer	
	NE: 355	ne transformer is 80%, the		59
	a) 5.0 ampere	b) 3.6 ampere	c) 2.8 ampere	d) 2.5 ampere
144.	In a coil of self inductance	0.5 henry, the current var	ies at a constant rate from	zero to 10 amperes in
	2 seconds. The e.m.f. gene	erated in the coil is		
	a) 10 volts	b) 5 volts	c) 2.5 <i>volts</i>	d) 1.25 volts

- 145. In an A.C. generator, when the plane of the armature is perpendicular to the magnetic field
 - a) Both magnetic flux and emf are maximum
 - b) Both magnetic flux and emf are zero
 - c) Both magnetic flux and emf are half of their respective maximum values
 - d) Magnetic flux is maximum and emf is zero
- 146. One conducting U-tube can slide inside another as shown in figure, maintaining electrical contacts between the tubes. The magnetic field B is perpendicular to the plane of the figure. If each tube moves towards the other at a constant speed v, then the emf induced in the circuit in terms of B, l and v, where lis the width of each tube, will be

- b) -Blv

- 147. Lenz's law is expressed by the following formula (here e = induced e.m.f., $\phi = \text{magnetic flux in one turn}$ and N = number of turns)

a)
$$e = -\phi \frac{dN}{dt}$$

b)
$$e = -N \frac{d\phi}{dt}$$

b)
$$e = -N \frac{d\phi}{dt}$$
 c) $e = -\frac{d}{dt} \left(\frac{\phi}{N}\right)$ d) $e = N \frac{d\phi}{dt}$

- 148. In a uniform magnetic field of inductionB, a wire in the form of semicircle of radius r rotates about the diameter of the circle with angular frequency ω . If the total resistance of the circuit is R, the mean power generated per period of rotation is

a)
$$\frac{B\pi r^2\omega}{2R}$$

b)
$$\frac{(B\pi r^2\omega)^2}{5Rt}$$

c)
$$\frac{(B\pi r\omega)^2}{2R}$$

c)
$$\frac{(B\pi r\omega)^2}{2R}$$
 d) $\frac{(B\pi r\omega^2)^2}{8R}$

- 149. Lenz's law applies to
 - a) Electrostatics

b) Lenses

c) Electro-magnetic induction

- d) Cinema slides
- 150. In the following figure, the magnet is moved towards the coil with a speed v and induced emf e. If magnet and coil recede away from one another each moving with speed v, the induced emf in the coil will be

b) 2e

c) e/2

- 151. When a rod of length l is rotated with angular velocity of ω in a perpendicular field of induction B, about one end, the emf across its ends is
 - a) $Bl^2\omega$

- 152. A LC circuit is in the state of resonance. If $C = 0.1 \mu F$ and L = 0.25 henry, neglecting ohmic resistance of circuit what is the frequency of oscillations
 - a) 1007 Hz
- b) 100 Hz
- c) 109 Hz
- d) 500 Hz

- 153. When a metallic plate swings between the poles of magnet
 - a) No effect on the plate
 - b) Eddy currents are set up inside the plate and the direction of the current is along the motion of the plate
 - c) Eddy currents are set up inside the plate and the direction of the current oppose the motion of the plate
 - d) Eddy currents are set up inside the plate

154.		ırns and area of cross-secti		
	시크리크 2010년 시간 시간 사람들이 있다면 없는 경우를 보고 있다면 하는데 되었다.	lar to the plane of the coil c	hanges at the rate of 1000	tesla per second, the
	current in the coil is	72-12-12-12-12	12 10 CE	122 12 01
	a) 1.0 ampere	b) 50 ampere	c) 0.5 ampere	d) 5.0 ampere
155.	- 1000	pplane is 36 m. If the plane	is flaying at 400 kmh ⁻¹ , th	ie emf induced between th
	wings tips is (assume $V =$	· · · · · · · · · · · · · · · · · · ·		
2022332	a) 16 V	b) 1.6 V	c) 0.16 V	d) 0.016 V
156.	and the control of th	ugh a choke coil of 5 henry	is decreasing at the rate of	2 <i>ampere/sec</i> . The e.m.f.
	developing across the coi			
	a) 10 V	b) -10 V	c) 2.5 V	d) $-2.5 V$
157.	In the figure magnetic en	ergy stored in the coil is		
	$\frac{1}{T}$ 10 V 2 Ω	*		
	a) Zero	b) Infinite	c) 25 joules	d) None of the above
158.	If coil is open then L and		0, 20,00000	a) itomo or uno upo to
	a) ∞, 0	b) 0, ∞	c) ∞, ∞	d) 0, 0
159.		ards a coil (i) speedly (ii) sl		
	respectively	,,,,		•
	a) More in first case/Mor	e in first case	b) More in first case/Equa	al in both cases
	c) Less in first case/More	e in second case	d) Less in first case/Equa	l in both cases
160.	Armature current in dc m	otor will be maximum whe	en	
	a) Motor has acquired ma	aximum speed	b) Motor has acquired int	ermediate speed
	c) Motor has just started	moving	d) Motor is switched off	
161.	When a low flying aircraft	t passes over head, we som	etimes notice a slight shaki	ng of the picture on our TV
	screen. This is due to			
		l received from the antenn		
	aircraft.	ect signal received by the a		ll reflected by the passing
		x occuring due to the passa	ige of aircraft	
	d) Vibration created by the			
162.		L is bent into a semicircle. I		<u> </u>
	270 70	ular to the field. The induce	ed emi between the ends of	the wire is
	\times \times \times \times \times \times \times \times			
	× × × × × × × × × × × × × × × × × × ×			
	× × × × × ×			
	$\times \times \times \times \times \times \times \times \times$			
	x x x x x x x x			
	a) BLv	b) 2 <i>BLv</i>	c) 2πBLv	d) $\frac{2BvL}{\pi}$
160				***
165.	and horizontal. The boat	t in a region where the eart carries a vertical aerial 2 m l emf in the wire of aerial is	long. If the speed of the bo	
	a) 0.75 mV	b) 0.50 mV	c) 0.15 mV	d) 1 mV
164.	A conducting circular loo magnetic field. The radiu	p is placed in a uniform ma s of the loop starts shrinkin	gnetic field $0.04 T$ with its	plane perpendicular to the
	radius is 2 <i>cm</i> is	b) 4.0 = . W	-) 0.0	1) 1 (
	a) $3.2 \pi \mu V$	b) 4.8 πμV	c) $0.8 \pi \mu V$	d) 1.6 πμV

- 165. A square loop of wire, side length 10 cm is placed at angle of 45° with a magnetic field that changes uniformly from 0.1 T to zero in 0.7 s. The induced current in the loop (its resistance is 1 Ω) is
 - a) 1.0 mA
- b) 2.5 mA
- c) 3.5 mA
- 166. An infinitely cylinder is kept parallel to an uniform magnetic field B directed along positive z axis. This direction of induced current as seen from the z axis will be
 - a) Clockwise of the +ve z axis

b) Anticlockwise +ve z axis

c) Zero

- d) Along the magnetic field
- 167. The self inductance of a solenoid of length L, area of cross-section A and having N turns is
- c) $\mu_0 N^2 LA$
- d) $\mu_0 NAL$
- 168. A conducting rod AC of length 4l is rotated about a point O in a uniform magnetic field \vec{B} directed into the paper. AO = l and OC = 3l. Then

- a) $V_A V_O = \frac{B\omega l^2}{2}$ b) $V_O V_C = \frac{7}{2}B\omega l^2$ c) $V_A V_C = 4B\omega l^2$ d) $V_C V_O = \frac{9}{2}B\omega l^2$

- 169. A transformer of efficiency 90% draws an input power of 4 kW. An electrical appliance connected across the secondary draws a current of 6 A. The impedance of the device is
 - a) 60Ω

- d) 100 Ω
- 170. The variation of induced emf(ϵ) with time (t) in a coil if a short bar magnet is moved along its axis with a constant velocity is best represented as

- 171. Three solenoid coils of same dimension, same number of turns and same number of layers of winding are taken. Coil 1 with inductance L_1 was wound using a Mn wire of resistance $11\Omega m^{-1}$; Coil 2 with inductance L₂ was wound using the similar wire but the direction of winding was reversed in each layer; Coil 3 with inductance L_3 was wound using a superconducting wire. The self-inductance of the Coils L_1, L_2, L_3 are
 - a) $L_1 = L_2 = L_3$
- b) L_1 , = L_2 ; $L_3 = 0$
- c) L_1 , = L_3 ; $L_2 = 0$
- d) $L_1 > L_2 > L_3$
- 172. A transformer is often filled with oil. The oil used should have
 - a) Low viscosity

b) High dielectric strength

c) Low boiling point

- d) High thermal conducting
- 173. Which of the following is a wrong statement

- a) An emf can be induced between the ends of a straight conductor by moving it through a uniform
- b) The self induced emf produced by changing current in a coil always tends to decrease the current
- c) Inserting an iron core in a coil increases its coefficient of self induction
- d) According to Lenz's law, the direction of the induced current is such that it opposes the flux change that causes it
- 174. Voltage in the secondary coil of a transformer does not depend upon
 - a) Voltage in the primary coil

b) Ratio of number of turns in the two coils

c) Frequency of the source

- d) Both (a) and (b)
- 175. Fleming's left and right hand rule are used in
 - a) DC motor and AC generator

b) DC generator and AC motor

c) DC motor and DC generator

- d) Both rules are same, any one can be used
- 176. A horizontal rod of length L rotates about a vertical axis with a uniform angular velocity ω. A uniform magnetic field B exists parallel to the axis of rotation. Then potential difference between the to ends of the rod is

- a) $\omega L^2 B$
- b) $\omega^2 LB$
- c) $\frac{1}{2}\omega L^2 B$
- d) $\frac{1}{2}\omega^2 LB$
- 177. A rectangular loop has a sliding connector PQ of length l and resistance R Ω and it is moving with a speed v as shown. The set-up is placed in a uniform magnetic field going into the plane of the paper. The three currents I_1 , I_2 and I are

a)
$$I_1 = -I_2 = \frac{Blv}{R}$$
, $I = \frac{2Blv}{R}$
b) $I_1 = I_2 = \frac{Blv}{3R}$, $I = \frac{2Blv}{3R}$

b)
$$I_1 = I_2 = \frac{Blv}{3R}$$
, $I = \frac{2Blv}{3R}$

c)
$$I_1 = I_2 = I = \frac{Blv}{R}$$

d)
$$I_1 = I_2 = \frac{Blv}{6R}, I = \frac{Blv}{3R}$$

- 178. In transformer, core is made of soft iron to reduce
 - a) Hysteresis losses

- b) Eddy current losses
- c) Force opposing electric current
- d) None of the above
- 179. A coil of self inductance 50 henry is joined to the terminals of a battery of e.m.f. 2 volts through a resistance of 10 ohm and a steady current is flowing through the circuit. If the battery is now disconnected, the time in which the current will decay to 1/e of its steady value is
 - a) 500 seconds
- b) 50 seconds
- c) 5 seconds
- d) 0.5 seconds
- 180. In which of the following circuit is the current maximum just after the switch S is closed

193. A varying current at the rate of 3 <i>A/s</i> in a coil gene inductance of the two coils is	rates an e.m.f. of $8 mV$ in a	nearby coil. The mutual
a) $2.66 mH$ b) $2.66 \times 10^{-3} mH$	c) 2.66 H	d) 0.266 H
194. The number of turns in primary and secondary c		
current in the secondary coil is 4A, then the curren		
a) 1A b) 2 A	c) 4 A	d) 5 A
195. A circular coil of mean radius of 7 cm and having 4	1	
minute in the earth's magnetic field ($B = 0.5$ gauss		
a) 1.158 V b) 0.58 V	c) 0.29 V	d) 5.8 <i>V</i>
196. Electric fields induced by changing magnetic fields	2014 CONTRACTOR	u) 5.6 v
	are	
a) Conservative		
b) Non-conservative	11 11 11 11 11	
c) May be conservative or non-conservative depen	ding on the condition	
d) Nothing can be said	c	
197. In an induction coil with resistance, the induced en		
	b) The switch is put off	
c) The switch is put on due to low resistance		
198. The inductance of a solenoid 0.5 m long of cross-se		
a) 12.5 <i>mH</i> b) 1.25 <i>mH</i>	c) 15.0 mH	d) 0.12 <i>mH</i>
199. A coil of resistance 10 Ω and an inductance 5H is co	onnected to a 100 <i>volt</i> batt	ery. Then energy stored in
the coil is		
a) 125 <i>erg</i> b) 125 <i>J</i>	c) 250 <i>erg</i>	d) 250 <i>J</i>
200. A small piece of metal wire is dragged across the ga		nagnet in 0.4 s. If change in
magnetic flux in the wire is 8×10^{-4} Wb, then emf		
a) $8 \times 10^{-3} \text{ V}$ b) $6 \times 10^{-3} \text{ V}$		d) $2 \times 10^{-3} \text{ V}$
201. A current $I = 10 \sin(100 \pi t) A$ is passed in first coi	l, which induces a maximu	m emf of 5 πV in second coil.
The mutual inductance between the coils is		
a) 5 mH b) 10 mH	c) 15 mH	d) 20 mH
202. The current through choke coil increases from zero	to 6 A in 0.3 seconds and	an induced e.m.f. of $30 V$ is
produced. The inductance of the coil of choke is		
a) 5 <i>H</i> b) 2.5 <i>H</i>	c) 1.5 H	d) 2 H
203. A conducting ring is placed around the core of an e	lectromagnet as shown in f	ig. when key K is pressed,
the ring		
Ring →		
V K		
a) Remain stationary	b) Is attracted towards	the electromagnet
c) Jumps out of the core	d) None of the above	•
204. The magnetic flux linked with the coil varies with	679.	the magnitude of the induced
emf at 2 s is		one magnitude of the manufacture
a) 9 V b) 16 V	c) 3 V	d) 4 V
205. A conducting wire is dropped along east-west direct		-,
a) No emf is induced	b) No induced current fl	ows
c) Induced current flows from west to east	d) Induced current flow	
206. Induced potential in a coil is developed by change of	87/1	
a) 1/9 volt b) 0.09 volt	c) 1 volt	d) 9 volt
207. Two solenoids of equal number of turns have their		
their self inductances will be	0	
es lan manu al a no en alones a 2 TETT TO TO 15 META (TV)		

2)	1	2
a	-	~

	-	100
hì	1	1
D)	4	-

208. Near a circular loop of conducting wire as shown in the figure an electron moves along a straight line. The direction of the induced current if any in the loop is

- a) Variable
- b) Clockwise
- c) Anticlockwise
- 209. An alternating current of frequency 200 rad/sec peak value 1A as shown in the figure, is applied to the primary of a transformer. If the coefficient of mutual induction between the primary and the secondary is 1.5H, the voltage induced in the secondary will be

- a) 300 V
- b) 191 V
- c) 220 V
- d) 471 V
- 210. The energy stored in an inductor of self inductance L henry carrying a current of 1 A is

a)
$$L^2I$$

b)
$$-LI^2$$

c)
$$\frac{1}{2}LI^2$$

- 211. A 50 turns circular coil has a radius of 3 cm, it is kept in a magnetic field acting normal to the area of the coil. The magnetic field B increased from 0.10 to 0.35 T in 2 millisecond. The average induced emf in the coil is
 - a) 1.77 V
- b) 17.7 V
- c) 177 V
- d) 0.177 V
- 212. The primary winding of transformer has 500 turns whereas its secondary has 5000 turns. The primary is connected to an ac supply of 20 V, 50 Hz. The secondary will have an output of
 - a) 200 V, 50 Hz
- b) 2 V, 50 Hz
- c) 200 V, 500 Hz
- d) 2 V, 5 Hz
- 213. A coil of 40Ω resistance has 100 turns and radius 6 mm is connected to ammeter of resistance of 160 ohms. Coil is placed perpendicular to the magnetic field. When coil is taken out of the field, 32μ C charge flows through it. The intensity of magnetic field will be
- b) 5.66 T
- c) 0.655 T
- 214. A current carrying solenoid is approaching a conducting loop as shown in the figure. The direction of induced current as observed by an observer on the other side of the loop will be

- a) Anticlockwise
- b) Clockwise
- c) East
- d) West
- 215. In a circuit with a coil resistance 2 ohms, the magnetic flux changes from 2.0 Wb to 10.0 Wb in 0.2 second. The charge that flows in the coil during this time is
 - a) 5.0 coulomb
- b) 4.0 coulomb
- c) 1.0 coulomb
- d) 0.8 coulomb
- 216. In a choke coil, the resistance X_L and resistance R are such that
- b) $X_L \gg R$
- c) $X_L \ll R$
- d) $X_L = \infty$
- 217. The magnitude of the earth's magnetic field at a place is B_0 and the angle of dip is δ . A horizontal conductor of length l lying magnetic north-south moves eastwards with a velocity v. The emf induced across the conductor is

\ P		
a) Zero		

- c) $B_0 lv$
- d) $B_0 lv \cos \delta$
- 218. Two coils of self inductances 2mH and 8mH are placed so close together that the effective flux in one coil is completely linked with the other. The mutual inductance between these coil is
 - a) 4 mH
- b) 16 mH

b) $B_0 l v \sin \delta$

- c) 10 mH
- d) 6 mH
- 219. A coil is suspended in a uniform magnetic field, with the plane of the coil parallel to the magnetic lines of force. When a current is passed through the coil it starts oscillating; it is very difficult to stop. But if an aluminium plate is placed near to the coil, it stops. This is due to
 - a) Development of air current when the plate is placed
 - b) Induction of electrical charge on the plate
 - c) Shielding of magnetic lines of force as aluminium is a paramagnetic material
 - d) Electromagnetic induction in the aluminium plate giving rise to electromagnetic damping
- 220. An electric potential difference will be induced between the ends of the conductor shown in the diagram, when the conductor moves in the direction

b) Q

- 221. A step-up transformer has transformation ratio of 3: 2. What is the voltage in secondary if voltage in primary is 30 V
 - a) 45 V
- b) 15 V
- c) 90 V
- 222. If a current of 3.0 amperes flowing in the primary coil is reduced to zero in 0.001 second, then the induced e.m.f. in the secondary coil is 15000 volts. The mutual inductance between the two coils is
 - a) 0.5 henry
- b) 5 henry
- c) 1.5 henry
- 223. The formula for induced e.m.f. in a coil due to change in magnetic flux through the coil is (here A = area of the coil, B = magnetic field)
 - a) $e = -A \cdot \frac{dB}{dt}$
- b) $e = -B \cdot \frac{dA}{dt}$
- c) $e = -\frac{d}{dt}(A.B)$ d) $e = -\frac{d}{dt}(A \times B)$
- 224. A transformer has 100 turns in the primary coil and carries 8 A current. If input power is one kilowatt, the number of turns required in the secondary coil to have 500V output will be
- b) 200
- c) 400
- d) 300
- 225. When a wire loop is rotated in a magnetic field, the direction of induced e.m.f. changes one in each
 - a) 1/4 revolution
- b) 1/2 revolution
- c) 1 revolution
- d) 2 revolution
- 226. A conductor ABOCD moves along its bisector with a velocity of 1 m/s through a perpendicular magnetic field of $1 wb/m^2$, as shown in fig. If all the four sides are of 1m length each, then the induced emf between points A and D is

- b) 1.41 volt
- c) 0.71 volt
- d) None of the above
- 227. As shown in the figure, P and Q are two coaxial conducting loops separated by some distance. When the switch S is closed, a clockwise current I_P flows in P (as seen by E) and an induced current I_{Q_1} flows in Q. The switch remains closed for a long time. When S is opened, a current I_{Q_2} flows in Q. Then the directions of I_{Q_1} and I_{Q_2} (as seen by E) are

- a) Respectively clockwise and anticlockwise
- b) Both clockwise
- c) Both anticlockwise
- d) Respectively anticlockwise and clockwise
- 228. A transformer is used to
 - a) Change the alternating potential
 - b) Change the alternating current
 - c) To prevent the power loss in alternating current flow
 - d) To increase the power of current source
- 229. Large transformers, when used for some time, become hot and are cooled by circulating oil. The heating of transformer is due to
 - a) Heating effect of current alone

- b) Hysteresis loss alone
- c) Both the hysteresis loss and heating effect of
- d) None of the above
- 230. The north pole of a bar magnet is moved swiftly downward towards a closed coil and then second time it is raised upwards slowly. The magnitude and direction of the induced current in the two cases will be of

First case Second case

- a) Low value clockwise
- Higher value anticlockwise
- b) Low value clockwise
- Higher value anticlockwise
- c) Higher value anticlockwise Low value clockwise
- d) Higher value anticlockwise Low value clockwise
- 231. In an AC generator, a coil with N turns, all of the same area A and total resistance R, rotates with frequency ω in a magnetic field B. The maximum value of emf generated in the coil is
 - a) NABRW
- b) NAB
- c) NABR
- d) $NAB\omega$
- 232. A transformer connected to 220 volt line shows an output of 2 A at 11000 volt. The efficiency is 100%. The current drawn from the line is
- b) 200 A
- c) 22 A
- 233. A circular wire of radius r rotates about its own axis with angular speed ω in a magnetic field Bperpendicular to its plane, then the induced emf is
 - a) $\frac{1}{2}Br\omega^2$
- b) $Br\omega^2$
- c) $2Br\omega^2$
- d) Zero

- 234. The self inductance of a straight conductor is
 - a) Zero
- b) Very large
- c) Infinity
- d) Very small
- 235. The flux associated with coil changes from 1.35 Wb to 0.79 Wb within $\frac{1}{10}$ s. Then the charge produced by the earth coil, if resistance of coil is 7Ω is
 - a) 0.08 C
- b) 0.8 C
- c) 0.008 C
- d) 8 C
- 236. An e.m.f. of 12 volt is produced in a coil when the current in it changes at the rate of 45 amp/minute. The inductance of the coil is
 - a) 0.25 henry
- b) 1.5 henry
- c) 9.6 henry
- d) 16.0 henry
- 237. Two identical induction coils each of inductance L joined in series are placed very close to each other such that the winding direction of one is exactly opposite to that of the other, what is the net inductance?
 - a) L^2

b) 2L

c) L/2

d) Zero

238. For previous objective, which of the following graphs is correct

- 239. A solenoid has 2000 turns wound over a length of 0.30 m. The area of its cross-section is $1.2 \times$ 10^{-3} m². Around its central section a coil of 300 turns is wound. If an initial current of 2 A in the solenoid is reversed in 0.25s, the emf induced in the coil is
 - a) 48 V
- b) 4.8 V
- c) $4.8 \times 10^{-1} \text{ V}$
- d) $4.8 \times 10^{-2} \text{V}$
- 240. An aeroplane in which the distance between the tips of the wings in 50 m is flying horizontally with a speed of 360 kmh⁻¹ over a place where the vertical component of earth's magnetic field is 2×10^{-4} Wbm⁻². The potential difference between the tips of the wings would be
 - a) 0.1 V
- b) 1.0 V
- c) 0.2 V
- d) 0.01 V
- 241. A metal conductor of length 1 m rotates vertically about one of its ends at angular velocity 5 rad s⁻¹. If the horizontal component of earth's magnetic field is 0.2×10^{-4} T, then the emf developed between the two ends of the conductor is

- b) 50 μV
- c) 5 mV
- 242. In a coil when current changes from 10A to 2A in time 0.1s, induced emf is 3.28 V. what is self -inductance of coil?
 - a) 4 H
- b) 0.4 H
- c) 0.04 H
- d) 5 H
- 243. The figure shows three circuits with identical batteries, inductors and resistances. Rank the circuits according to the currents through the battery just after the switch is closed, greatest first

	b) $i_2 > i_1 > i_3$		
보다 (100 km) 하다면 하다 하나 하다는 하나 하다면 하나 하다는 하나 하다는 하나 하다는 하나 하다는 하나	생각 하다 하는 사람들이 하는 사람이 되었다면 하는 것이 되는 것이 되었다.	장사님들이 얼마가 되었습니다	lar to a magnetic field. If the emf
	s 2 V, the magnitude of the fi		D 0.0
a) 2	b) 5	c) 0.4	d) 0.8
		olytic DC cell of emf 2 v	is connected to its primary. The
output voltage across		-) 2 4 17	1) 12 1/
a) Zero	b) 4 V	c) 2.4 V	d) 12 V $^{-t}$ at time. t . How long it will
take to make the e.m		2 mH is given by $I = t^-e$	at time. t. How long it will
a) 1 s	b) 2 s	c) 3 s	d) 4 s
			radii rand Rrespectively as
	10.77		of the conductors can be given by
Shown in the right c. r	nere, r = 1 the macadin	iductance of the system o	of the conductors can be given by
$\begin{pmatrix} R & A & B \\ r & O & \end{pmatrix}$			
*			
a) $\frac{\mu_0 \pi r^2}{2R}$	b) $\frac{\mu_0 \pi R^2}{2r}$	c) $\frac{\pi R^2}{\mu_0 r}$	d) $\frac{\mu_0 \pi r}{2R}$
$\frac{a_1}{2R}$	$\frac{1}{2r}$	$\frac{c_j}{\mu_0 r}$	$\frac{dJ}{2R}$
248. Self induction of a so	lenoid is		
	onal to current flowing throu	gh the coil	
b) Directly proportio	engelegik kan para para kan permuan pelitik kan permuan pelitik kan permuan pelitik kan pelitik kan berana ber		
	nal to area of cross-section		
	ional to area of cross-section		100
	luctance of 60 <i>henry</i> and a r		
battery, how long wi	ll it take for the current to re	each $\frac{e}{e} \approx 63.2\%$ of its find	nal value
a) 1 second		c) e seconds	d) 2e seconds
5 /5			onnected across the secondary is
77	0.5 A. What is the primary v	(177)	
a) 50 V, 1 amp	b) 10 V, 5 amp	c) 25 V, 4 amp	d) 20 V, 2 amp
400mm (10mm 10mm 10mm 10mm 10mm 10mm 10mm		german (j. 1925) [2] - [2] 14 (14 (14 (14 (14 (14 (14 (14 (14 (14	d in parallel and 10 <i>henry</i> when
	The difference between the t		1) 5 /
a) 2 henry	b) 3 henry	c) 4 henry	d) 5 henry
		cn current grows from ze	ro to the value (where I_0 is the
steady state current) a) $0.63 I_0$	b) 0.50 I ₀	c) 0.37 I ₀	d) I_0
253. Induced emf in the co		c) 0.37 I ₀	$u_j I_0$
a) Conductivity of co		b) Amount of flux	
c) Rate of change of l		d) Resistance of coil	
			ohm and the combination is
	als of a 2 <i>volt</i> battery. The tir		
a) 40 seconds	b) 20 seconds	c) 8 seconds	d) 5 seconds
	이 프라이트 이 아이를 하면 하다.		power output be <i>P</i> , then the
	ng all losses must be equal t		 ■ College (College (Colle
a) 5 <i>P</i>	b) 1.5 P	c) P	d) $\frac{2}{5}P$
252 Anniconor de la lace de la compre	5-54 2 1-57 1-490-00-00-00-0	177 	
- 2012년 1월 12일 - 10일 대한민국 (1922년 1922년 1922 - 1220년 1922년	45		e voltage is stepped up to 240000
V by a transformer b	efore it is sent on a high volt	age transmission line. Th	e current in transmission line is

CLICK HERE >>>

a) 3.67 A	b)
A solenoid 60 m	m long has 5

c) 1.67 A

d) 2.40 A

257. A solenoid 60 mm long has 50 turns on it and is wound on an iron rod of 7.5 mm radius. Find the flux through the solenoid when the current in it is 3A. The relative permeability of iron is 600

a) 1.66 Wb

b) 1.66 nWb

2.67 A

c) 1.66 mWb

d) 1.66 µWb

258. Self-inductance of a coil is $50 \, mH$. A current of $1 \, A$ passing through the coil reduces to zero at steady rate in $0.1 \, \text{sec.}$, the self-induced emf is

a) 5 volts

b) 0.05 volts

c) 50 volts

d) 0.5 volts

259. A step-up transformer operates on a 230 *V* line and supplies a load of 2 *ampere*. The ratio of the primary and secondary windings is 1 : 25. The current in the primary is

a) 15 A

b) 50 A

c) 25 A

d) 12.5 A

260. A square loop of side a is rotating about its diagonal with angular velocity ω in a perpendicular magnetic field \vec{B} . It has 10 turns. The e. m. f. induced is

a) $B_a^2 \sin \omega t$

b) $B_a^2 \cos \omega t$

c) $5\sqrt{2} Ba^2$

d) $10 Ba^2 \omega \sin \omega t$

261. The device that does not work on the principle of mutual induction is

a) Induction coil

b) Motor

c) Tesla coil

d) Transformer

262. In a step-up transformer, the turn ratio is 1 : 2. A Leclanche cell (e.m.f. 1.5V) is connected across the primary. The voltage developed in the secondary would be

a) 3.0 V

b) 0.75 V

c) 1.5 V

d) Zero

263. A conducting rod of length 2l is rotating with constant angular speed ω about its perpendicular bisector. A uniform magnetic field \vec{B} exists parallel to the axis of rotation. The e.m.f. induced between two ends of the rod is

a) $B\omega l^2$

b) $\frac{1}{2}B\omega l^2$

c) $\frac{1}{8}B\omega l^2$

d) Zero

264. Two coils have a mutual inductance 0.005~H. The current changes in the first coil according to equation $I=I_0\sin\omega t$, where $I_0=10A$ and $\omega=100\pi~radian/sec$. The maximum value of e.m.f. in the second coil is a) 2π b) 5π c) π d) 4π

265. The charge which will flow through a 200 Ω galvanometer connected to a 400 Ω circular coil of 1000 turns wound on a wooden stick 20 mm in diameter, if a magnetic field B = 0.012 T parallel to the axis of the stick decreased suddenly to zero is

a) $6.3 \mu C$

b) 63 μC

c) $0.63 \mu C$

d) 630 μC

266. A magnet *N-S* is suspended from a spring and when it oscillates, the magnet moves in and out of the coil *C.* The coil is connected to a galvanometer *G.* Then, as the magnet oscillates

- a) G shows no deflection
- b) G shows deflection to the left and right but the amplitude steadily decreases
- c) G shows deflection to the left and right with constant amplitude
- d) G shows deflection on one side
- 267. When power is drawn from the secondary coil of the transformer, the dynamic resistance
 - a) Increases
- b) Decreases
- c) Remains unchanged
- d) Changes erratically
- 268. A uniform but time varying magnetic field B(t) exists in a circular region of radius a and is directed into the plane of the paper as shown in figure. The magnitude of induced electric filed at point P at a distance r from the centre of the circular region

- a) Is zero
- b) Decrease as 1/r
- c) Increases as r
- d) Decreases $1/r^2$
- 269. Two circular coils A and B are facing each other as shown in figure. When the current i through A is altered

- a) There will be repulsion between A and B if i is increased
- b) There will be attraction between A and B if i is increased
- c) There will be neither attraction nor repulsion when i is changed
- d) Attraction or repulsion between *A* and *B* depends on the direction of current. It does not depend whether the current is increased or decreased
- 270. The inductance of a closed-packed coil of 400 turns is $8\,mH$. A current of $5\,mA$ is passed through it. The magnetic flux through each turn of the coil is
 - a) $\frac{1}{4\pi}\mu_0 W b$
- b) $\frac{1}{2\pi}\mu_0 W b$
- c) $\frac{1}{3\pi}\mu_0 W b$
- d) $0.4 \mu_0 Wb$
- 271. In a transformer 220 ac voltage is increased to 2200 *volts*. If the number of turns in the secondary are 2000, then the number of turns in the primary will be
 - a) 200

- b) 100
- c) 50

- d) 20
- 272. Pure inductance of 3.0 H is connected as shown below. The equivalent inductance of the circuit is

a) 1 *H*

b) 2 h

c) 3 H

- d) 9 H
- 273. Two coils P and Q are placed co-axially and carry current I and I' respectively

- a) If I' = 0 and P moves towards Q, a current in the same direction as I is induced in Q
- b) If I=0 and Q moves towards P, a current opposite in direction to that of I' is induced in P
- c) When $I \neq 0$ and $I' \neq 0$ are in the same direction, then two coil tend to move apart
- d) None of the above
- 274. A cylindrical bar magnet is kept along the axis of a circular coil. If the magnet is rotated about its axis, then
 - a) A current will be induced in a coil
- b) No current will be induced in a coil
- c) Only an e.m.f. will be induced in the coil
- d) An e.m.f and a current both will be induced in the coil
- 275. As shown in the figure a metal rod makes contact and completes the circuit. The circuit is perpendicular to the magnetic field with B = 0.15 tesla. If the resistance is 3Ω , force needed to move the rod as indicated with a constant speed of 2m/sec is

- a) $3.75 \times 10^{-3} N$
- b) $3.75 \times 10^{-2} N$
- c) $3.75 \times 10^2 N$
- d) $3.75 \times 10^{-4} N$

- 276. Fan is based on
 - a) Electric Motor
- b) Electric dynamo
- c) Both
- d) None of these
- 277. In a primary coil 5A current is flowing on 220 volts. In the secondary coil 2200V voltage produces. Then ratio of number of turns in secondary coil and primary coil will be
 - a) 1:10
- b) 10:1
- c) 1:1
- d) 11:1
- 278. An AC generator of 220 V having internal resistance $r=10~\Omega$ and external resistance $R=100~\Omega$. What is the power developed in the external circuit
 - a) 484 W
- b) 400 W
- c) 441 W
- d) 369 W
- 279. When a circular coil of radius 1 m and 100 turns is rotated in a horizontal uniform magnetic field, the peak value of emf induced is 100 V. the coil is unwound and then rewound into a circular coil of radius 2 m. If it is rotated now, with the same speed, under similar conditions, the new peak value of emf developed is

- b) 25 V
- c) 100 V
- 280. Current from A and B in the straight wire is decreasing. The direction of induced current in the loop, is

- a) Clock-wise
- b) Anti-clock-wise
- c) Changing
- d) Nothing can be said
- 281. A conducting square loop of side L and resistance R moves in its plane with a uniform velocity v perpendicular to one of its sides. A magnetic induction B constant in time and space, pointing perpendicular and into the plane of the loop exists everywhere with part of the loop outside the field, as shown in figure. The induced emf is

- a) BvR
- b) vBL/R
- c) vBL
- d) BLv/2

282. The momentum in m	echanics is expressed as m	× V. The analogous expres	sion in electricity is
a) $i \times Q$	b) $i \times V$	c) L × i	d) $L \times Q$
283. A 50 volt potential di	fference is suddenly applie	ed to a coil with $L = 5 \times 10^{-6}$	$^{-3}$ henry and $R = 180$ ohm
rate of increase of cur	rrent after 0.001 second is		
a) 27.3 amp/sec	b) 27.8 amp/sec	c) 2.73 amp/sec	d) None of the above

- 284. An ideal transformer has 500 and 5000 turn in primary and secondary windings respectively. If the primary voltage is connected to a 6V battery then the secondary voltage is
- b) 60 V d) 6.0 V 285. The horizontal component of the earth's magnetic field at a place is $3 \times 10^{-4} T$ and the dip is $\tan^{-1} \left(\frac{4}{3}\right)$. A metal rod of length 0.25 m placed in the north-south position and is moved at a constant speed of 10 cm/s towards the east. The emf induced in the rod will be

c) $5 \mu V$

- 286. An L-R circuit has a cell of e.m.f. E, which is switched on at time t=0. The current in the circuit after a long time will be d) $\frac{E}{\sqrt{L^2 + R^2}}$ a) Zero c) $\frac{E}{I}$
- 287. A transformer works on the principle of a) Magnetic effect of the electrical current b) Mutual induction c) Electrical inertia d) Self induction

b) 1 μV

- 288. A conducting circular loop is placed in a uniform magnetic field, B = 0.25 T with its plane perpendicular to the loop. The radius of the loop is made to shrink at a constant rate of $1mms^{-1}$. The induced e.m.f. when radius is 2cm, is
- d) $\frac{\pi}{2}\mu V$ a) $2 \mu V$ b) $2\pi\mu V$ c) $\pi \mu V$
- 289. In the following circuit, the bulb will become suddenly bright if

a) Zero

- a) Contact is made or broken b) Contact is made
- c) Contact is broken d) Won't become bright at all
- 290. What is the mutual inductance of a two-loop system as shown with centre separation l

- 291. Lenz's law is statement of
 - a) Law of conservation of charge b) Law of conservation of current
- c) Law of conservation of energy d) None of the above 292. There are two solenoids of same length and inductance L but their diameters differ to the extent that one can just fit into the other. They are connected in three different ways in series. (1) They are connected in series but separated by large distance, (2) they are connected in series with one inside the other and

ohm. The

d) $10 \mu V$

- a) $0,4L_0,2L_0$
- b) $4L_0, 2L_0, 0$
- c) $2L_0$, 0, $4L_0$
- d) $2L_0$, $4L_0$, 0
- 293. Plane figures made of thin wires of resistance R + 50 milli ohm/metre are located in a uniform magnetic field perpendicular into the plane of the figures and which decrease at the rate $dB/dt = 0.1 \, m \, T/s$. The current in the inner and outer boundary are inner radius a = 10 cm and outer radius b = 20 cm)

- a) $10^{-4}A$ (Clockwise), $2 \times 10^{-4}A$ (Clockwise)
- b) $10^{-4}A$ (Anticlockwise), $2 \times 10^{-4}A$ (Clockwise)
- c) $2 \times 10^{-4} A$ (Clockwise), $10^{-4} A$ (Anticlockwise)
- d) $2 \times 10^{-4} A$ (Anticlockwise), $10^{-4} A$ (Anticlockwise)
- 294. The number of turns in primary and secondary coils of a transformer are 100 and 20 respectively. If an alternating potential of 200 volt is applied to the primary, the induced potential in secondary will be
 - a) 10 V
- b) 40 V
- c) 1000 V
- d) 20,000 V
- 295. A rectangular loop of length I and breadth b is placed at distance of x from infinitely long wire carrying current i such that the direction of current is parallel to breadth. If the loop moves away from the current wire in a direction perpendicular to it with a velocity v, the magnitude of the emf in the loop is (μ =permeability of free space)
- b) $\frac{\mu_0 i^2 v}{4 \pi^2 x} \log \left(\frac{b}{l} \right)$ c) $\frac{\mu_0 i l b v}{2 \pi x (l+x)}$
- d)
- 296. A coil of N turns and mean cross-sectional area A is rotating with uniform angular velocity ω about an axis at right angle to uniform magnetic field B. The induced e.m.f. E in the coil will be
 - a) NBA sin ωt
- b) $NB \omega \sin \omega t$
- c) $NB/A \sin \omega t$
- d) NBA $\omega \sin \omega t$
- 297. A uniformly wound solenoid coil of self-inductance 1.8×10^{-4} H and resistance 6Ω is broken up into two identical coils. These identical coils are then connected in parallel across a 12 V battery of negligible resistance. The time constant for the current in the circuit is
 - a) 0.1×10^{-4} s
- b) 0.2×10^{-4} s
- c) 0.3×10^{-4} s
- d) 0.4×10^{-4} s
- 298. When a sheet of metal is placed in a magnetic field, which changes from zero to a maximum value, the induced currents are set up in the direction shown in figure. What is the direction of magnetic field.

a) Into the plane of the paper

b) Out of the plane f the paper

c) West to East

- d) South to North
- 299. What is the self inductance of a solenoid of length 31.4 cm, area of cross-section 10^{-3} m² and total number of turns 10^3 ?
 - a) 4 mH
- b) 4 H

- c) 40 H
- d) 0.4 H

300. Work of electric motor is

	a) To conv	vert ac into dc		b) To convert dc into ac		
	c) Both (a) and (b)		d) To convert ac into me	chanical work	
	301. Which typ	e of losses dor	not occur in the transforme	r?		
	a) Iron los	ses	b) Copper losses	c) Mechanical losses	d) Flux leakage	
	302. In a transf	ormer, the nu			and 4 respectively. If 240 V	
			y coil, then the ratio of curr	성류성	177	
	a) 4:5	127.5	b) 5:4	c) 5:9	d) 9:5	
	1.53	rea $0.1 m^2$ rot	tates with a speed of 60 rps	perpendicular to a magne	tic field of 0.4 T. If there are	
			aximum voltage induced in			
	a) 15.07 V		b) 1507 V	c) 250 V	d) 150 V	
	304. A current	passing throug	gh a coil of self inductance o	of 2mH changes at the rate	of 20 mAs ⁻¹ . The emfinduced	
	in the coil		T.B.	7/29		
	a) 10 μV		b) 40 μV	c) 10 mV	d) 40 mV	
	305. When the	speed of a dc r	motor increases the armatu	ire current	500 0 Charlest and Charlest	
	a) Increas	es		b) Decreases		
	c) Does no	ot change		d) Increases and decreas	ses continuously	
	306. A magnet	is dropped dov	wn an infinitely long vertic	450	.70	
	a) The ma	gnet moves wi	ith continuously increasing	velocity and ultimately ac	quires a constant terminal	
	velocity	f				
	b) The ma	gnet moves wi	ith continuously decreasing	g velocity and ultimately co	mes to rest	
	c) The ma	gnet moves wi	ith continuously increasing	velocity but constant acce	leration	
	d) The ma	gnet moves wi	ith continuously increasing	velocity and acceleration		
	307. A pair of p	arallel conduc	ting rails lie at right angles	to a uniform magnetic field	d of $2.0 T$ as shown in the fig.	
Two resistors 10 Ω and 5 Ω are to slide without friction along the rail. The distance between the conducting rails is 0.1 m . Then				ance between the		
	B ⊗	\$				
	§ 5Ω	≨ 10Ω				
		1			80 1081 20 11 10 88	
	a) Induced	$l current = \frac{1}{150}$	$\frac{1}{0}$ A directed clockwise if 10	Ω resistor is pulled to the	right with speed $0.5 ms^{-1}$	
	and 5Ω	resistor is held	d fixed			
	Induced	$1 \text{ current} = \frac{1}{1}$	A directed anti-clockwise	if 10Ω resistor is pulled to	the right with speed	
			o stor is held fixed			
) usaistau is mullad to the la	ft at 0.5 m s=1 and 100	
	C		$\frac{1}{10}$ A directed clockwise if 5 Ω	resistor is pulled to the le	it at 0.5 ms - and 1012	
	resisto	is held at rest	MOTORIS dept 16 Nation (Motoris			
	d) Induced	$l current = \frac{1}{150}$	A directed anti-clockwise	if 5 Ω resistor is pulled to t	he left at $0.5~ms^{-1}$ and 10Ω	
	resisto	is held at rest	t			
	308. Magnetic	fagnetic flux of $10\mu Wb$ is linked with a coil, when a current of 2 mA flows through through it. What is the				
	self induct	ance of the co	il?			
	a) 10 mH		b) 5 mH	c) 15 mH	d) 20 mH	
	309. An electri	motor runs a	a DC source of emf 200V ar	nd draws a current of 10A.	If the efficiency is 40%, then	
	the resista	nce of the arm	nature is			
	a) 50		b) 12 0	c) 120 0	d) 160 0	

310. When a battery is connected across a series combination of self inductance L and Resistance R, the variation in the current i with time t is best represented by

a) 10°	¹ V	b) 1.2 V	c) 1.0 V	d) $10^{-2} V$	
324. An e.r	n.f. of 100 millivol	ts is induced in a coil when	the current in another nea	rby coil becomes 10 ampere	
from	zero in 0.1 second.	The coefficient of mutual i	nduction between the two o	coils will be	
a) 1 n	ıillihenry	b) 10 millihenry	c) 100 millihenry	d) 1000 millihenry	
325. Energ	y associated with a	moving charge is due to			
a) Ele	ctric field	b) Magnetic field	c) Both (a) and (b)	d) None of these	
326. A cop	per disc of radius 0	.1~m is rotated about its ce	ntre with 10 revolutions pe	er second in a uniform	
magn	etic field of 0.1 tesl	a with its plane perpendic	ular to the field. The e.m.f. i	nduced across the radius of	
disc is					
a) $\frac{\pi}{10}$	V	b) $\frac{2\pi}{10} V$	c) $\pi \times 10^{-2} V$	d) $2\pi \times 10^{-2}V$	
10					
		Annual Control of the	the current through the prin	nary coil is 3 A, thus	
		ough load resistance	3.2.4	17.4.5.4	
a) 1 A		b) 4.5 A	c) 2 A	d) 1.5 A time $(x - axis)$ and induced	
		cuit is given by $\varphi = t^3 + 3$	st – 7. The graph between	time $(x - axis)$ and induced	
100000000000000000000000000000000000000	y – axis) will be a	1	L) Charlant line with a si		
V 20-20-20-20-20-20-20-20-20-20-20-20-20-2	aight line through t		b) Straight line with posid) Parabola not through	57 Broken a Britan Santa (2000)	
	aight line with nega	and the state of t		the origin pattery is 10 V and it switches	
		induced emf of inductor	- 511. If applied voltage of t	dattery is 10 v and it switches	
	110 ⁴ V		c) $2 \times 10^{-4} \text{ V}$	d) None of these	
		3:50	made to move in the same of	17.7	
		and the first of the second and the second s	e of 2m in 1 sec. The induce		
a) Zei		and the magnet a distance	b) 1 V	a cim produced in the con	
c) 0.5				from the given information	
		rh a solenoid increases at a	constant rate, the induced		
		ne direction of the inducing			
		osite to the direction of the			
1100	restriction of the contract of	nd is in the direction of the	Figure 1980 configuration comments and constitution of		
d) Inc	reases with time ar	nd opposite to the direction	n of the inducing current		
332. A long	g solenoid has 500	turns. When a current of 2	ampere is passed through i	t, the resulting magnetic flux	
linked	with each turn of	the solenoid is $4 \times 10^{-3} W$	b. The self-inductance of the	e solenoid is	
a) 1.0	henry	b) 4.0 henry	c) 2.5 henry	d) 2.0 henry	
333. A coil	of 100 turns and a	rea 5 square centimeter i	s placed in a magnetic field	B = 0.2 T. The normal to	
the plane of the coil makes an angle of 60° with the direction of the magnetic field. The magnetic f				eld. The magnetic flux	
linked	l with the coil is				
		2.70	c) $10^{-2}Wb$	d) $10^{-4}Wb$	
	resp _e rence and the safety and the state of the safety and the f			ient of self-induction $1 mH$.	
	The magnetic induction in the centre of the core of the coil when a current of 2A flows in it, will be				
	$22 Wbm^{-2}$	b) $0.4 Wbm^{-2}$	c) $0.8 Wbm^{-2}$	d) $1 Wbm^{-2}$	
335. A coil	of area $100cm^2$ ha	s 500 turns. Magnetic field	of 0.1 weber/metre ² is pe	rpendicular to the coil. The	
field i	s reduced to zero ir	n 0.1 second. The induced			
a) 1 V		b) 5 <i>V</i>	c) 50 V	d) Zero	
		icient of self induction 40n	nH. What is the energy store	ed in it when a current of 2 A	
50	sed through it?				
a) 40	52:	b) 80mJ	c) 20mJ	d) 100mJ	
		75 17 .	gnetic field <i>B</i> . The direction	of induced current in the	
wire i	s shown in the figu	re. The direction of magne	tic field will be		

CLICK HERE >>>

- a) In the plane of paper pointing towards right
- b) In the plane of paper pointing towards left
- c) Perpendicular to the plane of paper and down-wards
- d) Perpendicular to the plane of paper and upwards
- 338. If a coil of 40 turns and area 4.0 cm² is suddenly removed from a magnetic field, it is observed that a charge of $2.0 \times 10^{-4} \text{C}$ flows into the coil. If the resistance of the coil is 80Ω , the magnetic flux density in Wbm⁻² is......
 - a) 0.5

b) 1.0

c) 1.5

- d) 2.0
- 339. A rectangular ABCD which is rotated at a constant angular velocity about an horizontal as shown in the figure. The axis of rotation of the coil as well as the magnetic field B are horizontal. Maximum current will flow in the circuit when the plane of the coil is

- a) Inclined at 30° to the magnetic field
- b) Perpendicular to the magnetic field
- c) Inclined at 45° to the magnetic field
- d) Parallel to the magnetic field
- 340. Average energy stored in a pure inductance L when a current i flows through it, is
 - a) Li^2

- b) $2Li^2$
- c) $\frac{Li^2}{4}$

- 341. A step down transformer, transforms a supply line voltage of 2200 V into 220 V. The primary coil has 5000 turns. The efficiency and power transmitted by the transformer are 90% and 8 kW respectively. Then the power supplied is
 - a) 9.89 kW
- b) 8.89 kW
- c) 88.9 kW
- 342. The mutual inductance between a primary and secondary circuits is 0.5 H. The resistances of the primary and the secondary circuits are 20 ohms and 5 ohms respectively. To generate a current of 0.4 A in the secondary, current in the primary must be changed at the rate of
 - a) 4.0 A/s
- b) 16.0 A/s
- c) 1.6 A/s
- d) 8.0 A/s
- 343. A circular ring of diameter 20 cm has a resistance of 0.01Ω . The charge that will flow through the ring if it is turned from a position perpendicular to a uniform magnetic field of 2.0 T to a position to the field is about
 - a) 63 C
- b) 0.63 C
- c) 6.3 C
- 344. A step up transformer connected to a 220 V AC line is to supply 22 kV a neon sign in secondary circuit. In primary circuit a fuse wire is connected which is to blow when the current in the secondary circuit exceeds 10 mA. The turn ratio of the transformer is
 - a) 50

- b) 100
- c) 150
- d) 200
- 345. A horizontal loop abcd is moved across the pole pieces of a magnet as shown in fig. with a constant speed v. When the edge ab of the loop enters the pole pieces at time t = 0 sec, which one of the following graphs represents correctly the induced emf in the coil

- 346. The direction of induced e.m.f. during electromagnetic induction is given by
 - a) Faraday's law
- b) Lenz's law
- c) Maxwell's law
- d) Ampere's law
- 347. A square metallic wire loop of side 0.1 m and resistance of 1Ω is moved with a constant velocity in a magnetic field of 2 wb/m^2 as shown in figure. The magnetic field is perpendicular to the plane of the loop, loop is connected to a network of resistances. What should be the velocity of loop so as to have steady current of 1mA in loop

- a) 1 cm/sec
- b) 2 cm/sec
- c) 3 cm/sec
- d) 4 cm/sec
- 348. A coil having n turns and resistance R Ω is connected with a galvanometer of resistance 4R Ω . This combination is moved in time t sec from a magnetic field W_1 wb to W_2 wb. The induced current in the

a)
$$\frac{W_2 - W_1}{5 Rnt}$$

b)
$$\frac{n(W_2 - W_1)}{5 Rt}$$

c)
$$-\frac{(W_2-W_1)}{Rnt}$$

- $d) \frac{n(W_2 W_1)}{Rt}$
- 349. The alternating voltage induced in the secondary coil of a transformer is mainly due to
 - a) A varying electric field

- b) A varying magnetic field
- c) The vibrations of the primary coil
- d) The iron core of the transformer
- 350. Lenz's law of electromagnetic induction corresponds to the
 - a) Law of conservation of charge

- b) Law of conservation of energy
- c) Law of conservation of momentum
- d) Law of conservation of angular momentum
- 351. In the circuit shown below, the ac source has voltage $V=20\cos(\omega t)$ volts with $\omega=2000~rad/sec$. The amplitude of the current will be nearest to

- a) First clockwise then anticlockwise
- b) In clockwise direction
- c) In anticlockwise direction
- d) First anticlockwise then clockwise
- 352. An ideal coil of 10 henry is joined in series with a resistance of 5 ohm and a battery of 5 volt. 2 second after joining, the current flowing in ampere in the circuit will be
- b) $(1 e^{-1})$
- c) (1 e)
- d) e
- 353. A coil has an area of 0.05 m^2 and it has 800 turns. It is placed perpendicularly in a magnetic field of strength $4 \times 10^{-5} Wb/m^2$, it is rotated through 90° in 0.1 sec. The average e.m.f. induced in the coil is
 - a) 0.056 V
- b) 0.046 V
- c) 0.026 V
- d) 0.016 V

- 354. Consider the statements:
 - (I) If magnetic field, $\mathbf{B} = 0$, then magnetic flux is also zero.
 - (II) If magnetic flux, $\phi = 0$, then magnetic field is also zero.

a) (I) is true, (II) may be true

b) Both (I) and (II) are true

c) (I) may be true, (II) is true

- d) (I) and (II) both are false
- 355. An inductance L and a resistance R are first connected to a battery. After some time the battery is disconnected but L and R remain connected in a closed circuit. Then the current reduces to 37% of its initial value in
 - a) RL sec
- b) R/L sec
- c) L/R sec
- d) 1/LR sec
- 356. Two similar circular loops carry equal currents in the same direction. On moving coils further apart, the electric current will
 - a) Increase in both

b) Decrease in both

c) Remain unaltered

- d) Increases in one and decreases in the second
- 357. A coil having 500 square loops each of side 10 cm is placed normal to a magnetic field which increases at the rate of 1 Wm⁻². The induced emf is
- c) 0.5 V
- 358. The diagram below shows two coils A and B placed parallel to each other at a very small distance. Coil A is connected to an ac supply. G is a very sensitive galvanometer. When the key is closed

- a) Constant deflection will be observed in the galvanometer for 50 Hz supply
- b) Visible small variations will be observed in the galvanometer for 50 Hz input
- Oscillations in the galvanometer may be observed when the input ac voltage has a frequency of 1 to 2
- d) No variation will be observed in the galvanometer even when the input ac voltage is 1 to or 2 Hz
- 359. A varying magnetic flux linking a coil is given by $\phi X t^2$. If at time t=3 s, the emf induced is 9V, then the value of X is
 - a) $0.66 \, \rm Wbs^{-2}$
- b) 1.5 Wbs⁻²
- c) -0.66 Wbs^{-2}
- d) -1.5 Wbs^{-2}
- 360. Consider the situation shown in the figure. The wire AB is sliding on the fixed rails with a constant velocity. If the wire AB is replaced by semicircular wire, the magnitude of the induced current will

- a) Increase
- b) Remain the same
- c) Decrease
- d) Increase or decrease depending on whether the semicircle bulge is towards the resistance or away from
- 361. In 0.1 s, the current in a coil increases from 1A to 1.5 A. If inductance of coil is 60mH, then induced current in external resistance of 3Ω will be
 - a) 1 A

- b) 0.5 A
- c) 0.2 A
- d) 0.1 A
- 362. The two rails of a railway track insulated from each other and the ground are connected to a millivoltmeter. What is the reading of the mV, when a train travels at a speed of 180 kmh⁻¹ along the track, given that the horizontal components of earth's magnetic field is $0.2 \times 10^{-4} \, \text{Wbm}^{-2}$ and the rails are separated by 1 m
 - a) 10^{-2} mV
- b) 10 mV
- c) 100 mV
- d) 1 m V

363. A solenoid is 1.5 m long	and its inner diameter is 4.	0 cm. It has three layers of	f windings of 1000 turns each
and carries a current of	2.0 amperes. The magnetic	flux for a cross-section of	the solenoid is nearly
a) 2.5×10^{-7} weber	b) 6.31×10^{-6} weber	c) 5.2×10^{-5} weber	d) 4.1×10^{-5} weber
364. The magnitude of the ea	arth's magnetic field at a pla	ce is B_0 and the angle of d	ip is δ . A horizontal conductor
of length l, lying north-	south, moves eastwards wit	h a velocity v . The emf inc	luced across the rod is
a) Zero	b) $B_0 lv$	c) $B_0 l v \sin \delta$	d) $B_0 lv \cos \delta$
365. In a magnetic field of 0.	05T, area of a coil changes f	rom $101cm^2$ to $100cm^2$ w	ithout changing the
resistance which is 2Ω .	The amount of charge that i	low during this period is	
a) 2.5×10^{-6} coulomb	b) 2×10^{-6} coulomb	c) 10^{-6} coulomb	d) 8×10^{-6} coulomb

b) 0.1 A d) 1/e A a) e A c) 1 A

- 367. A rectangular coil of 300 turns has an average area of 25 cm ×10cm. The coil rotates with a speed of 50 cps in uniform magnetic field of strength 4×10^{-2} T about an axis perpendicular to the field. The peak value of the induced emf is (in volt)
 - a) 300π b) $3000 \, \pi$ c) 3 m
- 368. Two coaxial solenoids are made by winding thin insulated wire over a pipe of cross-sectional area A =10cm2 and length=20 cm. If one of the solenoids has 300 turns and the other 400 turns , their mutual inductance is $(\mu_0 = 4\pi \times 10^{-7} \text{TmA}^{-1})$
- a) $2.4\pi \times 10^{-5}$ H b) $4.8\pi \times 10^{-4}$ H c) $4.8\pi \times 10^{-5}$ H d) $2.4\pi \times 10^{-4}$ H 369. In a transformer, number of turns in the primary are 140 and that in the secondary are 280. If current in
 - primary is 4A, then that in the secondary is a) 4 A b) 2 A c) 6 A d) 10 A
- 370. A current of 5 A is flowing at 220 V in the primary coil of a transformer. If the voltage produced in the secondary coil is 2200 V and 50% of power is lost, then the current in secondary will be
- a) 2.5 A b) 5 A c) 0.25 A 371. The current *i* in an inductance coil varies with time *t* according to the graph shown in fig. Which one of the following plots shows the variation of voltage in the coil with time

- 372. A coil self inductance L = 0.04 H and resistance $R = 12 \Omega$, connected to 220 V, 50Hz supply, what will be the current flow in the coil?
 - a) 11.7 A b) 12.7 A c) 10.7 A d) 14.7 A
- 373. When the number of turns and the length of the solenoid are doubled keeping the area of cross-section same, the inductance

- a) Remains the same
- b) Is halved
- c) Is doubled
- d) Becomes four times
- 374. A hundred turns of insulated copper wire are wrapped around an iron cylinder of area $1 \times 10^{-3} m^2$ and are connected to a resistor. The total resistance in the circuit is 10 ohms. If the longitudinal magnetic induction in the iron changes from 1 weber m^{-2} , in one direction to 1 weber m^{-2} in the opposite direction, how much charge flows through the circuit
 - a) $2 \times 10^{-2}C$
- b) $2 \times 10^{-3} C$
- c) $2 \times 10^{-4} C$
- d) $2 \times 10^{-5} C$
- 375. The current i in a coil varies with time as shown in the figure. The variation of induced emf with time

- 376. A player with 3 m long iron rod runs towards east with a speed of 30 km/hr. Horizontal component of earth's magnetic field is $4 \times 10^{-5} Wb/m^2$. If he is running with rod in horizontal and vertical positions, then the potential difference induced between the two ends of the rod in two cases will be
 - Zero in vertical and $1 \times 10^{-3}V$ in horizontal position
- b) $^{1 \times 10^{-3} V}_{\text{horizontal position}}$ in vertical position and zero is

c) Zero in both cases

- d) $1 \times 10^{-3} V$ in both cases
- 377. A coil having an area $2m^2$ is placed in a magnetic field which changes from $1Wb/m^2$ to $4Wb/m^2$ in an interval of 2 second. The e.m.f. induced in the coil will be
 - a) 4 V

b) 3 V

- c) 1.5 V
- d) 2 V
- 378. In a region of uniform magnetic induction $B=10^{-2}$ tesla, a circular coil of radius 30 cm and resistance π^2 ohm is rotated about an axis which is perpendicular to the direction of B and which forms a diameter of the coil. If the coil rotates at 200 rpm the amplitude of the alternating current induced in the coil is
 - a) $4\pi^2 mA$
- b) 30 mA
- c) 6 mA
- d) 200 mA

- 379. According to phenomenon of mutual inductance
 - a) The mutual inductance does not dependent on geometry of the two coils involved
 - b) The mutual inductance depends on the intrinsic magnetic property, like relative permeability of the material
 - c) The mutual inductance is independent of the magnetic property of the material
 - d) Ratio of magnetic flux produced by the coil 1 at the place of the coil 2 and the current in the coil 2 will be different from that of the ratio defined by interchanging the coils
- 380. The current carrying wire and the rod AB are in the same plane. The rod moves parallel to the wire with a velocity v. Which one of the following statements is true about induced emf in the rod

- a) End A will be at lower potential with respect to B
- b) A and B will be at the same potential
- c) There will be no induced e.m.f. in the rod
- d) Potential at A will be higher than that at B
- 381. What is the coefficient of mutual inductance when the magnetic flux changes by $2 \times 10^{-2} Wb$ and change in current in 0.01A
 - a) 2 henry
- b) 3 henry
- c) $\frac{1}{2}$ henry
- d) Zero
- 382. A circular coil of radius 5 cm has 500 turns of a wire. The approximate value of the coefficient of self induction of the coil will be
 - a) 25 millihenry
- b) 25×10^{-3} millihenry c) 50×10^{-3} millihenry d) 50×10^{-3} millihenry
- 383. The direction of induced current is such that it opposes the very cause that has produced it. This is the law of
 - a) Lenz
- b) Faraday
- c) Kirchhoff
- d) Fleming
- 384. Two identical coaxial circular loops carry current *i* each circulating in the clockwise direction. If the loops are approaching each other, then
 - a) Current in each loop increases
 - b) Current in each loop remains the same
 - c) Current in each loop decreases
 - d) Current in one-loop increases and in the other it decreases
- 385. Figure (i) shows a conducting loop being pulled out of a magnetic field with a speed v. Which of the four plots shown in figure (ii) may represent the power delivered by the pulling agent as a function of the speed v

a) a

b) b

- d) c'
- 386. Current in a coil changes from 5 A to 10 A in 0.2 s. If the coefficient of self-induction is 10 H, then the induced emf is
 - a) 112 V
- b) 250 V
- c) 125 V
- d) 230 V
- 387. The pointer of a dead-beat galvanometer gives a steady deflection because
 - a) Eddy currents are produced in the conducting frame over which the coil is wound
 - b) Its magnet is very strong
 - c) Its pointer is very light
 - d) Its frame is made of abonite
- 388. A loss free transformer has 500 turns on its primary winding and 2500 in secondary. The meters of the secondary indicate 200 volts at 8 amperes under these conditions. The voltage and current in the primary is
 - a) 100 V, 16 A
- b) 40 V, 40 A
- c) 160 V, 10 A
- d) 80 V, 20 A
- 389. A square loop of wire of side 5 cm is lying on a horizontal table. An electromagnet above and to one side of the loop is turned on, causing a uniform magnetic field down-wards at an angle of 60° to the vertical as

shown in figure. The magnetic induction is 0.50 T. The average induced emf in the loop, if the field increases from zero to its final value in 0.2 s is

a)	5.4	×	10	-3	V

b)
$$3.12 \times 10^{-3} V$$

d) 25.0
$$\times$$
 10⁻³ V

390. A small piece of metal wire is dragged across the gap between the pole pieces of a magnet in 0.5 second. The magnetic flux between the pole pieces is known to be $8 \times 10^{-4} Wb$. The *emf* induced in the wire is

a) 16 mV

c) 1.6 mV

d) 16 V

391. A moving conductor coil in a magnetic field produces an induced e.m.f. This is in accordance with

a) Ampere's law

b) Coulomb's law

c) Lenz's law

d) Faraday's law

392. Induction furnace is based on the heating effect of

a) Electric field

b) Eddy current

c) Magnetic field

d) Gravitational field

393. Turn ratio is 1.25. The step up transformer operates at 230 V and current through secondary is 2 A. Then current in primary is

a) 25 A

b) 100 A

c) 50 A

d) 20 A

394. The core of a transformer is laminated to reduce

a) Flux leakage

b) Output power

c) Hysteresis

d) Eddy current

395. A copper rod of length l is rotated about one end perpendicular to the magnetic field B with constant angular velocity ω . The induced e.m.f. between the two ends is

a) $1/2 B\omega l^2$

b) $3/4 B\omega l^2$

c) $B\omega l^2$

d) $2B\omega l^2$

396. A metallic ring connected to a rod oscillates freely like a pendulum. If now a magnetic field is applied in horizontal direction so that the pendulum now swings through the field, the pendulum will

a) Keep oscillating with the old time period

b) Keep oscillating with a smaller time period

c) Keep oscillating with a larger time period

d) Come to rest very soon

397. A circular coil of 500 turns of wire has an enclosed area of $0.1 m^2$ per turn. It kept perpendicular to a magnetic field of induction 0.2 T and rotated by 180° about a diameter perpendicular to the field in 0.1 sec. How much charge will pass when the coil is connected to a galvanometer with a combined resistance of 50 ohms

a) 0.2 C

b) 0.4 C

c) 2 C

d) 4 C

398. The self inductance of a coil is 5 henry, a current of 1 amp change to 2 amp within 5 second through the coil. The value of induced e.m.f. will be

a) 10 volt

b) 0.10 volt

c) 1.0 volt

d) 100 volt

399. In an oscillations of L-C circuit, the maximum charge on the capacitor is Q. The charge on the capacitor, when the energy is stored equally between the electric and magnetic field is

400. The mutual inductance of an induction coil is 5H. In the primary coil, the current reduces from 5A to zero in $10^{-3}s$. What is the induced emf in the secondary coil

a) 2500V

b) 25000V

c) 2510V

d) Zero

401. Energy required to establish a current of 4 A in a coil of self-inductance $L = 200 \,\mathrm{mH}$ is

a) 0.16 J

b) 0.18 J

c) 0.40 J

d) 1.6 J

402. The graph shows the variation in magnetic flux $\phi(t)$ with time through a coil. Which of the statements given below is not correct

a) There is a change in the direction as well as magnitude of the induced emf between B and D

b) The magnitude of the induced emf is maximum between B and C

c) There is a change in the direction as well as magnitude of induced emf between A to C

d) The induced emf is not zero at B

403. An e.m.f. of 5 volt is produced by a self inductance, when the current changes at a steady rate from 3 A to 2 A in 1 millisecond. The value of self inductance is

404. A metallic ring is dropped down, keeping its plane perpendicular to a constant and horizontal magnetic field. The ring enters the region of magnetic field at t=0 and completely emerges out at t=Tsec. The current in the ring varies as

405. A solenoid is placed inside another solenoid, the length of both being equal carrying same magnitude of current. The parameters like radius and number of turns are in the ratio 1:2 for the two solenoids. The mutual inductance on each other would be

a)
$$M_{12} = M_{21}$$

b)
$$M_{12} = 2M_{21}$$

c)
$$2M_{12} = M_{21}$$

d)
$$M_{12} = 4M_{21}$$

406. A horizontal straight wire 10 m long extending from east to west is falling with a speed of $5.0~\mathrm{ms^{-1}}$, at right angles to the horizontal component of the earth's magnetic field of strength $0.30 \times 10^{-4} \mathrm{Wbm^{-2}}$. the instantaneous value of the induced potential gradient in the wire, from west to east, is

a)
$$+1.5 \times 10^{-3} \text{ Vm}^{-1}$$

b)
$$-1.5 \times 10^{-3} \,\mathrm{Vm}^{-1}$$

c)
$$+1.5 \times 10^{-4} \text{ Vm}^{-1}$$

d)
$$-1.5 \times 10^{-4} \, \text{Vm}^{-1}$$

407. If a current of 5 A in a coil of self inductance 2 mH is cut off in time 0.1 s, the induced emf in the coil is

c)
$$0.2 V$$

408. According to Faraday's law of electromagnetic induction

a) The direction of induced current is such that it opposes the cause producing it

b) The magnitude of induced e.m.f. produced in a coil is directly proportional to the rate of change of magnate flux

c) The direction of induced e.m.f. is such that it opposes the cause producing it

d) None of the above

409. A square coil *ABCD* lying in x - y plane with it's centre at origin. A long straight wire passing through origin carries a current i = 2t in negative z-direction. The induced current in the coil is

- a) Clockwise
- b) Anticlockwise
- c) Alternating
- d) Zero

o o	metallic rod with length along se between its two ends will	the east-west direction is fall	ing under gravity. The
		N 17 17 17 17 17 17 17 17 17 17 17 17 17	
a) Be zero	b) Be constant	c) Increase with time	d) Decrease with time

- 411. An e.m.f. of 12 volts is induced in a given coil when the current in it changes at the rate of 48 amperes per minute. The self inductance of the coil is
 - a) 0.25 henry
- b) 15 henry
- c) 1.5 henry
- d) 9.6 henry
- 412. An inductor of inductance L=400mH and resistors of resistances $R_1=2\Omega$ and $R_2=2\Omega$ are connected to a battery of emf 12V as shown in the figure. The internal resistance of the battery is negligible. The switch S is closed at t = 0. The potential drop across L as a function of time is

- a) $6e^{-5t}V$
- b) $\frac{12}{t}e^{-3t}V$
- c) $6(1-e^{\frac{-t}{0.2}})V$
- 413. An inductor of 2 henry and a resistance of 10 ohms are connected in series with a battery of 5 volts. The initial rate of change of current is
 - a) 0.5 amp/sec
- b) 2.0 amp/sec
- c) 2.5 amp/sec
- d) 0.25 amp/sec
- 414. The magnetic field in the cylindrical region shown in figure increases at a constant rate of 20 mT/sec. Each side of the square lop ABCD has a length of 1 cm and resistance of 4Ω . Find the current in the wire AB if the switch S is closed

- a) 1.25×10^{-7} A, (anti-clockwise)
- b) $1.25 \times 10^{-7} A$, (clockwise)
- c) 2.5×10^{-7} A, (anti-clockwise)
- d) 2.5×10^{-7} A, (clockwise)
- 415. The output voltage of a transformer connected to 220 volt line is 1100 volt at 2 amp current. Its efficiency is 100%. The current coming from the line is
- b) 10 A
- c) 11 A
- 416. A straight conductor of length 4m moves at a speed of 10m/s. When the conductor makes an angle of 30° with the direction of magnetic field of induction of 0.1~wb. m^2 then induced emf is

b) 4 V

c) 1 V

- 417. A magnetic field of $2 \times 10^{-2}T$ acts at right angles to a coil of area $100~cm^2$ with 50 turns. The average emf induced in the coil is 0.1 V, when it is removed from the field in time T. The value of t is
 - a) 0.1 sec
- b) 0.01 sec
- c) 1 sec
- 418. An inductor L, a resistance R and two identical bulbs, B_1 and B_2 are connected to a battery through a switch S as shown in the figure. The resistance R is the same as that of the coil that makes L. Which of the following statements gives the correct description of the happenings when the switch S is closed

a) The bulb B_2 lights up earlier than B_1 and finally both the bulbs shine equally bright

- b) B_1 light up earlier and finally both the bulbs acquire equal brightness c) B_2 lights up earlier and finally B_1 shines brighter than B_2 d) B_1 and B_2 light up together with equal brightness all the time
- 419. Why the current does not rise immediately in a circuit containing inductance
 - a) Because of induced emf b) Because of high voltage drop c) Because of low power consumption d) Because of Joule heating
- 420. The self inductance of a coil is L. Keeping the length and area same, the number of turns in the coil is increased to four times. The self inductance of the coil will now be
 - a) $\frac{1}{4}L$ c) 4 L d) 16 L
- 421. Choke coil works on the principle of
- c) Mutual induction d) Wattless current a) Transient current b) Self induction 422. The primary winding of a transformer has 100 turns and its secondary winding has 200 turns. The
- primary is connected to an ac supply of 120 V and the current flowing in it is 10 A. The voltage and the current in the secondary are a) 240 V, 5 A b) 240 V, 10 A c) 60 V, 20 A d) 120 V, 20 A
- 423. In a coil rate of change of area is $5 m^2/milli$ second and current between becomes 1 amp from 2 amp in 2×10^{-3} sec. If magnitude of field is 1 tesla inductance of the coil is
- a) 2 H b) 5 H c) 20 H d) 10 H 424. A square coil of side 25 cm having 1000 turns is rotated with a uniform speed in a magnetic field about an axis perpendicular to the direction of the field. At an instant t, the emf induced in the coil is $e = 200 \sin t$
- c) 10^{-3} T a) 0.50 T b) 0.02 T d) 0.01 T
- 425. The efficiency of transformer is very high because
 - a) There is no moving part in a transformer b) It produces very high voltage c) It produces very low voltage d) None of the above
- 426. The induction coil works on the principle of

 $100\pi t$. The magnetic induction is

- a) Self-induction b) Mutual induction
- c) Ampere's rule d) Fleming's right hand rule 427. Lenz's law gives
- b) The direction of the induced current a) The magnitude of the induced e.m.f.
 - c) Both the magnitude and direction of the induced d) The magnitude of the induced current
- 428. Two coils of self inductance L_1 and L_2 are placed closer to each other so that total flux in one coil is completely linked with other. If M is mutual inductance between them, then
- c) $M = \sqrt{L_1 L_2}$ d) $M = (L_1 L_2)^2$ a) $M = L_1 L_2$ b) $M = L_1/L_2$
- 429. In a dc motor, induced e.m.f. will be maximum
 - b) When motor starts rotating a) When motor takes maximum speed c) When speed of motor increases d) When motor is switched off
- 430. The magnetic flux through a circuit of resistance R changes by an amount $\Delta \phi$ in time Δt . The total independent of quantity of electric charge Q which passes during this time through any point of the circuit
- b) $Q = \frac{\Delta \phi}{\Delta t} \times R$ c) $Q = -\frac{\Delta \phi}{\Delta t} + R$ d) $Q = \frac{\Delta \phi}{R}$ a) $Q = \frac{\Delta \phi}{\Delta t}$
- 431. A square loop of side 5 cm enters a magnetic field with $1 cms^{-1}$. The front edge enters the magnetic field at t = 0 then which graph best depicts emf

- 432. Magnetic flux linked with a coil is $\phi = 5t^2 + 2t + 3$, where t is second and ϕ is in weber. At time t=1 s, the value of induced emf in volt
 - a) 14

b) 1.2

c) 12

- d) 6
- 433. In circular coil, when no. of turns is doubled and resistance becomes $\frac{1}{4}th$ of initial, then inductance becomes
 - a) 4 times
- b) 2 times
- c) 8 times
- d) No change
- 434. The time constant of an LR circuit represents the time in which the current in the circuit
 - a) Reaches a value equal to about 37% of its final value
- b) Reaches a value equal to about 63% of its final value

c) Attains a constant value

- d) Attains 50% of the constant value
- 435. A coil and a bulb are connected in series with a dc source, a soft iron core is then inserted in the coil. Then
 - a) Intensity of the bulb remains the same
- b) Intensity of the bulb decreases

c) Intensity of the bulb increases

- d) The bulb ceases to glow
- 436. If a copper ring is moved quickly towards south pole of a powerful stationary bar magnet, then
 - a) Current flows through the copper ring
- b) Voltage in the magnet increase

c) Current flows in the magnet

- d) Copper ring will get magnetised
- 437. The average power dissipation in pure inductance is

a)
$$\frac{1}{2}LI^2$$

- b) 2*L1*²
- c) $\frac{1}{4}LI^2$
- d) Zero
- 438. The magnitude of magnetic induction for a current carrying toroid of uniform cross-section is
 - a) Uniform over the whole cross-section
- b) Maximum on the outer edge

c) Maximum on the inner edge

- d) Maximum at the center of cross-section
- 439. The current (I) in the inductance is varying with time according to the plot shown in figure

Which one of the following is the correct variation of voltage with time in the coil

- 440. The square root of the product of inductance and capacitance has the dimension of
 - a) Length
- b) Mass
- c) Time
- d) No dimension

l41. A step-down trai primary is	nsformer is connected to mai	n supply 200V to operat	e a 67V, 30W bulb. The curre	ent in
a) 3 A	b) 1.5 A	c) 0.3 A	d) 0.15 A	
	upling between two coils of so			
a) 50% flux of L_1	is linked with L_2	b) 100% flux of	L_1 is linked with L_2	
	ux of L_1 is linked with L_2	d) None of the a		

ELECTROMAGNETIC INDUCTION

: ANSWER KEY:														
1)	a	2)	a	3)	c	4)	c	165)	a	166)	С	167)	a	168)
5)	a	6)	a	7)	c	8)	a :	169)	C	170)	b	171)	c	172)
9)	b	10)	b	11)	b	12)	b :	173)	b	174)	c	175)	c	176)
13)	b	14)	b	15)	c	16)	b :	177)	b	178)	a	179)	c	180)
17)	b	18)	b	19)	b	20)	c :	181)	d	182)	c	183)	c	184)
21)	d	22)	c	23)	d	24)	b 2	185)	c	186)	c	187)	C	188)
25)	b	26)	d	27)	a	28)	a :	189)	C	190)	a	191)	a	192)
29)	a	30)	b	31)	C	32)	a 2	193)	a	194)	a	195)	b	196)
33)	b	34)	d	35)	b	36)	a :	197)	b	198)	b	199)	d	200)
37)	c	38)	b	39)	c	40)	d 2	201)	a	202)	c	203)	c	204)
41)	a	42)	a	43)	b	44)	d 2	205)	c	206)	d	207)	a	208)
45)	c	46)	c	47)	d	48)	a Z	209)	b	210)	C	211)	b	212)
49)	d	50)	c	51)	d	52)	b 2	213)	d	214)	b	215)	b	216)
53)	d	54)	d	55)	d	56)	a Z	217)	b	218)	a	219)	d	220)
57)	c	58)	d	59)	C	60)	a Z	221)	a	222)	b	223)	c	224)
61)	d	62)	a	63)	a	64)	b 2	225)	b	226)	b	227)	d	228)
65)	c	66)	d	67)	d	68)	c z	229)	c	230)	d	231)	d	232)
69)	a	70)	c	71)	d	72)	d 2	233)	d	234)	a	235)	a	236)
73)	b	74)	b	75)	a	76)	d 2	237)	d	238)	d	239)	a	240)
77)	b	78)	b	79)	b	80)	d 2	241)	b	242)	c	243)	a	244)
81)	b	82)	a	83)	b	84)	a Z	245)	d	246)	b	247)	a	248)
85)	d	86)	b	87)	b	88)	c z	249)	b	250)	b	251)	a	252)
89)	C	90)	c	91)	b	92)	ъ 2	253)	c	254)	d	255)	c	256)
93)	b	94)	c	95)	d	96)	d 2	257)	c	258)	d	259)	b	260)
97)	d	98)	b	99)	b	100)	c z	261)	C	262)	d	263)	d	264)
101)	d	102)	a	103)	c	104)	a 2	265)	a	266)	b	267)	a	268)
105)	c	106)	c	107)	c	108)	b 2	269)	a	270)	a	271)	a	272)
109)	d	110)	b	111)	d	112)	c Z	273)	b	274)	b	275)	a	276)
113)	b	114)	a	115)	a	116)		277)	b	278)	b	279)	d	280)
117)	b	118)	d	119)	c	120)	100	281)	c	282)	c	283)	d	284)
121)	d	122)	a	123)	a	124)	b 2	285)	d	286)	b	287)	b	288)
125)	c	126)	b	127)	a	128)	d Z	289)	c	290)	d	291)	c	292)
129)	b	130)	a	131)	d	132)	a Z	293)	a	294)	b	295)	d	296)
133)	b	134)	b	135)	a	136)	b z	297)	c	298)	b	299)	a	300)
137)	d	138)	c	139)	d	140)	d :	301)	C	302)	a	303)	b	304)
141)	a	142)	d	143)	a	144)	c	305)	b	306)	a	307)	d	308)
145)	d	146)	d	147)	b	148)	b 3	309)	b	310)	b	311)	b	312)
149)	c	150)	b	151)	b	152)	a S	313)	c	314)	c	315)	c	316)
153)	c	154)	c	155)	c	156)	a S	317)	d	318)	c	319)	c	320)
157)	c	158)	b	159)	b	160)	c	321)	d	322)	b	323)	c	324)
161)	c	162)	d	163)	c	164)		325)	c	326)	c	327)	C	328)

329)	a	330)	a	331)	b	332)	a	389)	b	390)	c	391)	d	392)	b	
333)	a	334)	a	335)	b	336)	b	393)	C	394)	d	395)	a	396)	d	
337)	c	338)	b	339)	d	340)	d	397)	b	398)	c	399)	b	400)	b	
341)	b	342)	a	343)	c	344)	b	401)	d	402)	d	403)	d	404)	b	
345)	d	346)	b	347)	b	348)	b	405)	a	406)	a	407)	a	408)	b	
349)	b	350)	b	351)	c	352)	b	409)	d	410)	c	411)	b	412)	d	
353)	d	354)	a	355)	c	356)	a	413)	C	414)	a	415)	b	416)	d	
357)	b	358)	C	359)	b	360)	b	417)	a	418)	C	419)	a	420)	d	
361)	d	362)	d	363)	b	364)	c	421)	b	422)	a	423)	d	424)	d	
365)	a	366)	d	367)	d	368)	d	425)	a	426)	b	427)	b	428)	c	
369)	b	370)	C	371)	c	372)	b	429)	a	430)	d	431)	c	432)	c	
373)	c	374)	a	375)	b	376)	b	433)	a	434)	b	435)	b	436)	a	
377)	b	378)	C	379)	b	380)	d	437)	d	438)	a	439)	d	440)	C	
381)	a	382)	a	383)	a	384)	c	441)	d	442)	b					
385)	b	386)	b	387)	a	388)	b									

ELECTROMAGNETIC INDUCTION

: HINTS AND SOLUTIONS :

1 (a)
$$\frac{80}{100} = \frac{120 \times 20}{1000 \times I_p}$$

$$I_p = \frac{120 \times 20}{1000 \times 0.8} = 3 \text{ A}$$

2 **(a)**If b

If bar magnet is falling vertically through the hollow region of long vertical copper tube then the magnetic flux linked with the copper tube (due to 'non-uniform' magnetic field of magnet) changes and eddy currents are generated in the body of the tube by Lenz's law. The eddy currents oppose the falling of the magnet which therefore experience a retarding force. The retarding force increases with increasing velocity of the magnet and finally equals the weight of the magnet. The magnet then attains a constant final terminal velocity *i. e.*, magnet ultimately falls with zero acceleration in the tube

3 **(c)** $\frac{N_p}{N_s} = \frac{V_p}{V_s} = \frac{i_s}{i_p}.$ The transformer is step-down type, so primary coil will have more turns. Hence $\frac{5000}{500} = \frac{2200}{V_s} = \frac{i_s}{4} \Rightarrow V_s = 220 \ V. \ i_s = 40 \ amp$

4 (c)

Efficiency of transformer,

$$\eta = \frac{\text{Output power}}{\text{Input power}}$$

$$\Rightarrow \frac{88}{100} = \frac{880}{P_i}$$

$$\Rightarrow P_i = 1000 \text{ W}$$
Input current,
$$I_p = \frac{P_i}{V_i}$$

$$= \frac{1000}{2200} = 0.45 \text{ A}$$

5 (a

For 100% efficient transformer

$$V_s i_s = V_p i_p \Rightarrow \frac{V_s}{V_p} = \frac{i_p}{i_s} = \frac{N_s}{N_p} \Rightarrow \frac{i_p}{4} = \frac{25}{100} \Rightarrow i_p$$

= 1 A

6 **(a)**

Crosses (\times) linked with the loop are decreasing, so induced current in it is clockwise, *i. e.*, from $B \rightarrow A$. Hence electrons flow from plate A and B so plate A becomes positively charged

7 **(c)** $M = \frac{\mu_0 N_1 N_2 A}{l}$

8 **(a)** $\frac{di}{dt} = \text{slope of } i - t \text{ graph; slope of graph } (2) < \text{slope of graph } (1) \text{ so } \left(\frac{di}{dt}\right)_2 < \left(\frac{di}{dt}\right)_1; \text{ Also } L \propto \frac{1}{(di/dt)} \Rightarrow L_2 > L_1$

The emf induced will be

$$e = vBl = 1 \times 0.5 \times 2 = 1 \text{ V}$$

10 **(b)**

Induced emf is given by

$$e = -\frac{d\phi}{dt}$$

If the radius of loop is r at a time t, then the instantaneous magnetic flux is given by

$$\phi = \pi r^2 B$$

$$e = -\frac{d}{dt} (\pi r^2 B)$$

$$e = -\pi B \left(\frac{2r \, dr}{dt} \right)$$

$$e = -2\pi B r \frac{dr}{dt}$$

Numerically, $e = 2\pi Br\left(\frac{dr}{dt}\right)$

11 **(b)**

$$e = \frac{-d\phi}{dt} = \frac{-NBA(\cos 0^{\circ} - \cos 180^{\circ})}{dt}$$

$$= \frac{2 NBA}{dt} = \frac{2 \times 1000 \times 0.6 \times 10^{-4} \times 0.05}{0.1}$$

$$= 0.06 \text{ V}$$

14 (b)

Self inductance of coil is

$$L = \frac{\mu_0 n^2 \pi r}{2}$$

$$= \frac{4\pi \times 10^{-7}}{2} \times (500)^2 \times \pi \times (5 \times 10^{-2})$$

$$= 25 \times 10^{-3} \text{H} = 25 \text{ mH}$$

15 (c)

Since the rod is moving in transverse magnetic field, so it will cut no flux passing through the field and hence no induced emf is produced. So, no current will flow through the rod.

16 (b)

Induced emf
$$e = A \frac{dB}{dt}$$

i.e.,
$$e \propto \frac{dB}{dt}$$
 (= slope of $B - t$ graph)

In the given graph slope of AB > slope of CD, slope in the 'a' region = slope in the 'c' region = 0, slope in the 'd' region = slope in the 'e' region \neq 0. That's why b > (d = e) > (a = c)

17 (b)

In steady state current passing through solenoid

$$i = \frac{E}{R} = \frac{10}{10} = 1 A$$

Induced emf

$$e = B_H lv$$

= 0.30 × 10⁻⁴ × 20 × 5.0 = 3mV

19 (b)

The induced emf e in the secondary is given by

$$e = -\frac{d\Phi}{dt} = -M\frac{dl}{dt}$$
or
$$|e| = M\frac{dl}{dt}$$

$$\therefore |e| = 5 \times \frac{10}{5 \times 10^{-4}} = 1 \times 10^{5} \text{V}$$

20 (c)

At t = 0 inductor behaves as broken wire then i = 29

At $t = \infty$ Inductor behaves as conducting wire

$$i = \frac{V}{R_2 R_2 / (R_1 + R_2)} = \frac{V(R_1 + R_2)}{R_1 R_2}$$

$$\eta = \frac{V_s i_s}{V_n i_n} \times 100 = \frac{11 \times 90}{220 \times 5} \times 100 = 90 \%$$

In the construction of mouth piece of a telephone, we use the phenomenon of change of resistance with pressure (of sound waves).

$$e = M \frac{di}{dt} = 0.09 \times \frac{20}{0.006} = 300 V$$

Betatron uses the phenomenon of electromagnetic induction.

25 (b)

Induced potential difference between two ends = $Blv = B_H lv$

$$= 3 \times 10^{-5} \times 2 \times 50 = 30 \times 10^{-3} volt$$
$$= 3 \text{ millivolt}$$

By Fleming's right hand rule, end A becomes positively charged

26 (d)

$$e_0 = \omega NBA = (2\pi v)NBA$$

= 2 × 3.14 × 1000 × 5000 × 0.2 × 0.25 = 157 kV

Here,
$$A = 10 \times 5 = 50 \text{cm}^2 = 50 \times 10^{-4} \text{m}^2$$

 $\frac{dB}{dt} = 0.2 \text{ Ts}^{-1}$

$$R - 20$$

$$E = \frac{d\Phi}{dt} = A.\frac{dB}{dt} = 50 \times 10^{-4} \times 0.02 = 10^{-4} \text{V}$$

Power dissipated in the form of heat

$$= \frac{E^2}{R} = \frac{10^{-4} \times 10 - 4}{2} = 0.5 \times 10^{-8} \text{W}$$
$$= 5 \times 10^{-9} \text{W} = 5 \text{nW}$$

28 (a)

> While moving due north, the truck intercepts vertical component of earth's field.

$$e = Blv = (90 \times 10^{-6})2.5 \times 30$$
$$= 6.75 \times 10^{-23} \text{V} = 6.75 \text{ mV}$$

According to Lenz's law, west end of the axle will be positive.

$$e = \frac{d\phi}{dt} = \frac{BdA}{dt} = \frac{2(\pi r^2 - L^2)}{dt} = 6.6 \times 10^{-3} V$$

Inductors obey the laws of parallel and series combination of resistors

32 (a)

$$H = \frac{V^2 t}{R} \text{ and } V = \frac{N(B_2 - B_1)A\cos\theta}{t}$$

$$V = \frac{1 \times (1 - 2) \times 0.01 \times \cos 0^{\circ}}{10^{-3}} = 10 V$$
So, $H = \frac{(10)^2 \times 10^{-3}}{0.01} = 10 J$

33 **(b)**

$$N = 1000$$
, $A = 500 \text{cm}^2 = 500 \times 10^{-4}$
= $5 \times 10^{-2} \text{m}^2$
 $B = 2 \times 10^{-5} \text{ Wb} - \text{m}^{-2}$, $\theta_1 = 0^\circ$, $\theta_2 = 180^\circ$, $\Delta t = 0.2 \text{ s}$

Initial flux linked with coil

$$\phi_1 = NBA \cos \theta_1
= NBA \cos 0^\circ
= NBA$$

Final flux $\phi_2 = NBA \cos 180^\circ$

$$= NBA(-1) = -NBA$$

Change in flux $\phi = \phi_2 - \phi_1$

$$= -NBA - (NBA) = -2NBA$$

∴ Induced emf

$$e = \frac{-\Delta \Phi}{\Delta t} = -\frac{(-2NBA)}{\Delta t} = \frac{2NBA}{\Delta t}$$

$$= \frac{2 \times 1000 \times 2 \times 10^{-5} \times 5 \times 10^{-2}}{0.2}$$

$$= 10 \times 10^{-3} \text{V} = 10 \text{ mV}$$

34 (d)

The magnetic flux through area A placed in magnetic field B is

$$\phi = BA \cos \theta$$

given,
$$\theta = 0^{\circ}, B = 1 \text{ Ts}^{-1}$$
,

$$A = (10)^2 \text{cm}^2 = 10^{-2} \text{m}^2$$

$$\phi = 1 \times 10^{-2}$$

By Faraday's law, induced emf is

$$e = -N\frac{\Delta \Phi}{\Delta t}$$
$$= -500 \times 10^{-2} = -5 \text{ V}$$

35 **(b)**

We know that
$$i = i_0 \left[1 - e^{\frac{-Rt}{L}} \right]$$
 or $\frac{3}{4}i_0 = i_0 \left[1 - e^{\frac{-t}{L}} \right]$

[where $\tau = \frac{L}{R}$ = time constant]

$$\frac{3}{4} = 1 - e^{-t}$$
 or $e^{-t/\tau} = 1 - \frac{3}{4} = \frac{1}{4}$

$$e^{t/\tau} = 4$$
 or $\frac{t}{\tau} = \ln 4$

$$\Rightarrow \tau = \frac{t}{\ln 4} = \frac{4}{2 \ln 2} \Rightarrow \tau = \frac{2}{\ln 2} sec$$

36 (a)

The current flows through the coil 1 is $I_1 = I_0 \sin \omega t$

Where I_0 is the peak value of current

Magnetic flux linked with the coil 2 is

$$\phi_2 = MI_1 = MI_0 \sin \omega t$$

Where *M* is the mutual inductance between the two coils

The magnitude of induced emf in coil 2 is

$$|\varepsilon_2| = \frac{d\phi_2}{dt} = \frac{d}{dt} (MI_0 \sin \omega t) = MI_0 \omega \cos \omega t$$

∴ Peak value of voltage induced in the coil 2 is

$$= MI_0\omega = 150 \times 10^{-3} \times 2 \times 2\pi \times 50 = 30\pi V$$

37 (c)

$$L = \frac{\mu_0 N^2 A}{l} = \frac{4\pi \times 10^{-7} \times (1000)^2 \times 10 \times 10^{-4}}{1}$$

= 1.256 mH

38 **(b)**

$$e = Bvl \Rightarrow e = 0.7 \times 2 \times (10 \times 10^{-2}) = 0.14 V$$

41 (a)

When a north pole of a bar magnet moves towards the coil, the induced current in the coil flows in a direction such that the coil presents its north pole to the bar magnet as shown in figure (a). Therefore, the induced current flows in the coil in the anticlockwise direction. When a north pole of a bar magnet moves away from the coil, the induced current in the coil flows in a direction such that the coil presents its such pole to the bar magnet as shown in figure (b)

Therefore induced current flows in the coil in the clockwise direction

42 **(a)**

$$e = -\frac{d\phi}{dt} = \frac{-3B_0A_0}{t}$$

43 **(b)**

$$i_s = \frac{P_s}{V_c} = \frac{4.4 \times 10^3}{11 \times 10^3} = 0.4 A$$

44 (d)

Since all the losses are neglected

So
$$P_{out} = P_{in}$$

45 (c)

 $Efficiency = \frac{Output power}{Input power}$

Input power=5000 W

Input voltage=200 V

∴ primary current,
$$I_p = \frac{5000}{200} = 25 \text{ A}$$

Output power = $5000 \times \frac{80}{100} = 4000 \text{ W}$

Output voltage =250 V

Secondary current, $I_s = \frac{4000}{250} = 16 \text{ A}$

46 (c

The induced emf is given by

$$|e| = \left(L\frac{di}{dt}\right)$$
$$= 0.4 \times 500 = 200 \text{ V}$$

47 (d

$$\frac{V_p}{V_s} = \frac{i_s}{i_p} \Rightarrow \frac{220}{22000} = \frac{i_s}{5} \Rightarrow i_s = 0.05 \text{ amp}$$

48 (a

As the shape of the loop is changing and hence, the flux linked with the loop changes. There will

an induced emf hence, induced current in the coil. Applying right hand screw rule we get induced current in anticlockwise direction.

49 (d)

$$|e| = L \frac{di}{dt} \Rightarrow 10 = L \times \frac{10}{1} \Rightarrow L = 1H$$

50 (c)

$$\phi = Mi \Rightarrow M = \frac{1.2 \times 10^{-2}}{0.01} = 1.2H$$

51 (d)

Induced emf,
$$e = -L\frac{di}{dt} = -L\frac{(-2-2)}{0.05}$$

 $8 = L\frac{(4)}{0.05}$
 $\therefore L = \frac{8 \times 0.05}{4} = 0.1 \text{ H}$

52 **(b)**

The magnetic flux linked with the primary coil is given by

$$\phi = \phi_0 + 4t$$

So, voltage across primary

$$V_P = \frac{d\Phi}{dt} = \frac{d}{dt}(\Phi + 4t)$$

= 4 V(as Φ_0 = constant)

Also, we have

$$N_P = 50 \text{ and } N_S = 1500$$

From relation,

$$\frac{V_S}{V_P} = \frac{N_S}{N_P}$$
Or $V_S = V_P \frac{N_S}{N_P} = 4 \left(\frac{1500}{50}\right) = 120 \text{V}$

53 (d)

In secondary e.m.f. induces only when current through primary changes

54 (d)

$$i = \frac{E - e}{R} \Rightarrow 1.5 = \frac{220 - e}{20} \Rightarrow e = 190 V$$

56 (a)

$$M_{21} = \frac{\mu_0 N_1 N_2 A_2}{l_2}$$

$$(4 \times 3.14 \times 10^{-7}) \times 1500 \times 100 \times$$

$$\therefore M_{21} = \frac{\{3.14(2 \times 10^{-2})^2\}}{80 \times 10^{-2}}$$

$$M_{21} = 2.96 \times 10^{-4} \text{H}$$

$$\Rightarrow M_{12} = M_{21} = 2.96 \times 10^{-4} \text{H}$$

57 (c

When frequency is high, the galvanometer will not show deflection

58 (d)

According to Lenz's law

59 (c)

The induced current will be in such a direction so that it opposes the change due to which it is produced

60 (a)

$$e = Bvl = 5 \times 10^{-5} \times \frac{360 \times 1000}{3600} \times 20 = 0.1V$$

61 (d

Cross ⊗ magnetic field passing from the closed loop is increasing. Therefore, from Lenz's law induced current will produce dot ⊙ magnetic field. Hence, induced current is anticlockwise.

62 (a)

$$\frac{h = L - L\cos\theta}{\theta}$$

$$\Rightarrow h = L(1 - \cos \theta) \qquad \dots (i)$$

$$\therefore v^2 = 2gh - 2gL(1 - \cos \theta)$$

$$= 2gL\left(2\sin^2\frac{\theta}{2}\right)$$

$$\Rightarrow v = 2\sqrt{gL}\sin\frac{\theta}{2}$$

Thus, maximum potential difference

$$V_{max} = BvL$$

$$= B \times 2\sqrt{gL} \sin \frac{\theta}{2}L$$

$$= 2BL \sin \frac{\theta}{2} (gL)^{1/2}$$

64 **(b**)

Rate of work =
$$\frac{W}{t} = P = Fv$$
; also $F = Bil = B\left(\frac{Bvl}{R}\right)l$

$$\Rightarrow P = \frac{B^2v^2l^2}{R} = \frac{(0.5)^2 \times (2)^2 \times (1)^2}{6} = \frac{1}{6}W$$

65 (c

The emf developed between the ends of the conductor

$$e = \frac{1}{2}B\lambda^2\omega$$
$$= \frac{1}{2} \times 0.2 \times 10^{-4} \times (1)^2 \times 5$$
$$= 50\mu V$$

66 **(d**

$$e = B.\frac{dA}{dt} = L\frac{di}{dt} \Rightarrow 1 \times \frac{5}{10^{-3}} = L \times \frac{(2-1)}{2 \times 10^{-3}} \Rightarrow L$$

67 (d)

More rapid is the movement of bar magnet, more is the deflection observed in the galvanometer

68 (c)

In a generator e.m.f. is induced according as Lenz's rule

69 (a)

Since the current is increasing, so inward magnetic flux linked with the ring also increases (as viewed from left side). Hence induced current in the ring is anticlockwise, so end x will be

Induced emf $|e| = A \frac{dB}{dt} = A \frac{d}{dt} (B_0 + \alpha t) \Rightarrow |e| =$

70 (c)

From Faraday's law of electromagnetic induction

$$e = -\frac{d\phi}{dt} = -BAN$$

Given, $B = 0.1 \text{ T}, N = 20, A = \pi r^2 = \pi (0.1)^2$

$$e = -0.1 \times 20 \times \pi (0.1)^2 = 20 \pi \text{ mV}$$

Mutual inductance between two coil in the same plane with their centers coinciding is given by

$$M = \frac{\mu_0}{4\pi} \left(\frac{2\pi^2 R_2^2 N_1 N_2}{R_1} \right) henry$$

72 (d)

Using Fleming's right hand rule, the direction of magnetic induction \vec{B} in the region P is downward into the paper.

Transformation ratio, $k = \frac{N_s}{N_p} = \frac{V_s}{V_p}$

For step-up transformer,

$$N_s > N_p$$
, $ie, V_s > V_p$, hence, $k > 1$.

74 (b)

$$N_2\phi_2 = Mi_1 \Rightarrow 9 \times 10^{-5} = M \times 3 \Rightarrow M$$
$$= 3 \times 10^{-5} H$$

75 (a)

Faraday's laws involve conversion of mechanical energy into electrical energy. This is in accordance with the law of conservation of energy

76 (d)

KE of charged possible in a cyclotron,

$$E_k = \frac{q^2 B^2 r^2}{2m}$$

But frequency $f = \frac{qB}{2\pi m}$

$$\therefore E_k = \frac{(2\pi m f)^2 r^2}{2m} = 2\pi^2 m f^2 r^2$$

$$\begin{array}{ccc}
 & E_k - \frac{2m}{2m} - 2\pi & m_f & 7 \\
 & & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & &$$

$$= 8.23 \times 10^{-13}$$

$$E_k = \frac{8.23 \times 10^{-13}}{1.6 \times 10^{-19}} = 5.1 \times 10^6 \text{ eV} = 5.1 \text{ MeV}$$

Magnetic flux, $\phi = 5t^2 - 4t + 1 Wb$

$$\therefore \frac{d\phi}{dt} = 10t - 4 \, Wb \, s^{-1}$$

The induced emf is $\varepsilon = \frac{-d\phi}{dt} = -(10t - 4)$

At,
$$t = 0.2 S$$
, $\varepsilon = -(10 \times 0.2 - 4) = 2V$

The induced current is $I = \frac{\varepsilon}{R} = \frac{2V}{10\Omega} = 0.2 A$

78 **(b)**

$$i = i_0 \left(1 - e^{\frac{Rt}{L}} \right) \Rightarrow \frac{di}{dt} = -i_0 \left(-\frac{R}{L} \right) e^{\frac{Rt}{L}} = \frac{i_0 R}{L} \cdot e^{\frac{Rt}{L}}$$
At $t = 0$; $\frac{di}{dt} = \frac{i_0 R}{L} = \frac{E}{L} \Rightarrow 4 = \frac{E}{20} \Rightarrow E = 80 V$

By the movement of both the magnets, current will be anticlockwise, as seen from left side, i.e., plate 1 will be positive and 2 will be negative

80 (d)

If current through A increases, magnetic field (\times) linked with coil B increases. Hence anticlockwise current induces in coil B. As shown in figure both the currents produce repulsive effect

81

$$\frac{L_B}{L_A} = \left(\frac{n_B}{n_A}\right)^2 \Rightarrow L_B = \left(\frac{500}{600}\right)^2 \Rightarrow 108 = 75 \, mH$$

82

Though emf is induced in the copper ring, but there is no induced current because current because of cut in the ring. Hence nothing opposes the free fall of the magnet. Therefore, a = g.

83

Power
$$P = \frac{e^2}{R}$$
; hence $e = -\left(\frac{d\phi}{dt}\right)$ where $\phi = NBA$
 $\therefore e = -NA\left(\frac{dB}{dt}\right)$. Also $R \propto \frac{1}{r^2}$

Where R = resistance, r = radius, l = length

$$\therefore P \propto \frac{N^2 r^2}{l} \Rightarrow \frac{P_1}{P_2} = 1$$

$$\frac{N_s}{N_p} = \frac{V_s}{V_p} \Rightarrow \frac{250}{100} = \frac{V_s}{28/\sqrt{2}} \Rightarrow V_s = 50 \text{ V}$$

85 **(d)**

$$e = Bl^{2}\pi v = 0.4 \times 10^{-4} \times (0.5)^{2} \times (3.14) \times \frac{120}{60}$$

$$= 6.28 \times 10^{-5} V$$

As x increases so $\frac{dB}{dt}$ increases, i. e., induced emf (e) is negative. When loop completely enters in the magnetic field, emf = 0When it exists, x increases but $\frac{dB}{dt}$ decreases,

i.e., e is positive

$$\begin{split} U &= \frac{1}{2}Li^2, i.e., \frac{U_2}{U_1} = \left(\frac{i_2}{i_1}\right)^2 = \left(\frac{1}{2}\right)^2 = \frac{1}{4} \Rightarrow U_2 \\ &= \frac{1}{4}U_1 \end{split}$$

88 (c)

Given, L = 10H, f = 50 Hz

For maximum power

$$X_C = X_L$$

$$\frac{1}{\omega C} = \omega L$$

$$C = \frac{1}{\omega^2 L}$$

$$C = \frac{1}{4\pi^2 \times 50 \times 50}$$

$$C = \frac{1}{4\pi^2 \times 50 \times 50 \times 10}$$

$$C = 0.1 \times 10^{-5} \text{F} = 1 \,\mu\text{F}$$

$$\eta = \frac{e}{E} \times 100 \Rightarrow e = 0.3 E$$

Now,
$$i = \frac{E - e}{R} \Rightarrow 12 = \frac{50 - (0.3 \times 50)}{R} \Rightarrow R = 2.9\Omega$$

90 (c)

Total charge induced in a loop depends on resistance and change in magnetic flux linked with the loop.

91 (b)

In transformer

$$\frac{n_p}{n_s} = \frac{V_P}{V_S} = \frac{5000}{240} = 20.8$$

92 (b)

If resistance is constant (10 Ω) then steady current in the circuit $i = \frac{5}{10} = 0.5$ A. But resistance is increasing it means current through the circuit starts decreasing. Hence inductance comes in picture which induces a current in the circuit in the same direction of main current. So i > 0.5 A

$$\frac{N_s}{N_p} = \frac{V_s}{V_p} \Rightarrow \frac{1}{20} = \frac{V}{2400} \Rightarrow V_s = 120 V$$
For 100% efficiency $V_i = V_i$

For 100% efficiency $V_s i_s = V_p i_p$

$$\Rightarrow 120 \times 80 = 2400 \ i_p \Rightarrow i_p = 4 \ A$$

95 (d)

From, Faraday's second law, $e = -\frac{d\phi}{dh}$ =-[12t-5]

$$= -[12 \times (0.25) - 5] = +2$$

Now,
$$i = \frac{e}{R} = \frac{2}{20} = 0.1 \text{ A}$$

96 (d)

Efficiency of a transformer,

$$\eta = \frac{\text{Power output}}{\text{Power input}}$$

For an ideal transformer, $\eta = 1$

 \therefore Power output = Power input = 60 W

98

Induced e.m.f. = $Blv = 0.3 \times 10^{-4} \times 10 \times 5$ $= 1.5 \times 10^{-3} V = 1.5 \ mV$

Magnetic flux, $\phi = \int \mathbf{B} \cdot d\mathbf{A} = BA \cos \theta$, where θ is angle between normal to the area dA with magnetic field B.

Here,
$$\theta = (90^{\circ} - 30^{\circ}) = 60^{\circ}$$

and
$$\theta = 10^{-4} \times \pi \left[\frac{21}{2} \times 10^{-2} \right]^2 \times \cos 60^\circ$$

= 1.732 × 10⁻⁶Wb

100 (c)

Current in B_1 will promptly become zero while current in B_2 will slowly tend to zero

$$e = M \frac{di}{dt} = 1.25 \times 80 = 100 V$$

102 (a)

From right hand thumb rule, the magnetic field passing through the loop due to the current i will be perpendicular to the plane of the page pointing downwards. The direction of current in the loop will be such as to oppose the increase of this field (Lenz's law), hence direction of induced current in the loop is anticlockwise.

103 (c)

$$e = NBA\omega; \ \omega = 2\pi f = 2\pi \times \frac{2000}{60}$$

 $\therefore e = 50 \times 0.05 \times 80 \times 10^{-4} \times 2\pi \times \frac{2000}{60} = \frac{4\pi}{3}$

104 (a)
$$i = \frac{E - e}{R} = \frac{220 - 210}{2} = \frac{10}{2} = 5A$$

105 (c)

From formula

$$L = \frac{\Phi}{i} = \frac{\mu_0 N^2 A}{2r} = \frac{\mu_0 N^2 \pi r^2}{2} r$$

So, if N is doubled, self inductance will be four times.

106 (c)

Rate of decay of current between
$$t = 5 ms$$
 to $6 ms = \frac{di}{dt} = -$ (Slope of the line BC) $e = -\left(\frac{5}{1 \times 10^{-3}}\right) = -5 \times 10^3 A/s$. Hence induced emf $e = -L \frac{di}{dt} = -4.6 \times (-5 \times 10^3) = 23 \times 10^3 V$

107 (c)

Emf induces during 'a' = 0 emf induces during 'b' is constant throughout emf induces during 'c' is constant throughout magnitude of emf induced during 'b' is equal to the magnitude of emf induced during 'c'. But the direction opposite

108 (b)

In a constant magnetic field conducting ring oscillates with a frequency of 100 Hz i.e., $T = \frac{1}{100} s$, in time $\frac{T}{4}$ flux links with coil changes from BA to zero \Rightarrow Induced emf = change in flux

 $= \frac{BA}{T/4} = \frac{4BA}{T} = \frac{4B \times \pi r^2}{T} = \frac{4 \times 0.01 \times \pi \times 1^2}{1/100}$

Induced electric field along the circle, using Maxwell equation $\oint E \cdot dl = -\frac{d\phi}{dt} = A \frac{dB}{dt} = e$ $\Rightarrow E = \frac{1}{2\pi r} \times \left(\pi r^2 \times \frac{dB}{dt}\right) = \frac{e}{2\pi r} = \frac{4\pi}{2\pi r} = \frac{2V}{m}$

110 (b)

Mutual inductance of the pair of coils depends on distance between two coils and geometry of two coils.

$$P = \frac{e^2}{R}; e = -\frac{d}{dt}(BA) = A\frac{d}{dt}(B_0e^{-t}) = AB_0e^{-t}$$

$$\Rightarrow P = \frac{1}{R}(AB_0e^{-t})^2 = \frac{A^2B_0^2e^{-2t}}{R}$$

At the time of starting t = 0 so $P = \frac{A^2 B_0^2}{2}$

$$\Rightarrow P = \frac{(\pi r^2)^2 B_\mathrm{o}^2}{R} = \frac{B_\mathrm{o}^2 \pi^2 r^4}{R}$$

112 (c)

$$L = 40 \text{ m}, v = 1080 \text{km } h^{-1} = 300 \text{m sec}^{-1} \text{ and}$$

 $B = 1.75 \times 10^{-5} T \Rightarrow e = Blv = 1.75 \times 10^{-5} \times 40 \times 300 = 0.21 \text{ V}$

113 (b)

The emf developed between the centre and the

$$e = \frac{1}{2}B\omega l^2 = \frac{1}{2} \times 0.05 \times 60[1]^2 = 1.5 \text{ V}$$

Induced current in both the coil assists the main current so current through each coil increases

115 (a)

Given,
$$N_P = 20$$
, $N_S = 10$, $e_p = 220$ V

: Transformation ratio, k

$$\frac{e_s}{e_p} = \frac{N_s}{N_p}$$
or $e_s = \frac{N_s}{N_p} \times ep$

$$= \frac{10}{20} \times 220 = 110 \text{ V}$$

116 (c)

By using Kirchhoff's voltage law

117 (b)

According to Lenz's law of electromagnetic induction, the relative motion between the coil and magnet produces change in magnetic flux.

119 (c)

A transformer is a device used to convert alternating current at high voltage into low voltage and vice - versa

120 (a)

In step-up transformer, number of turns in primary coil is less than the number of turns in secondary coil.

ie,
$$\frac{N_S}{N_p} > 1$$

121 (d)

The inductance of a coil of wire of N turns is given by

$$L = N \frac{\Phi}{i}$$

Where *i* is current and ϕ the magnetic flux. Given, N = 100, i = 5A, $\phi = 10^{-5} \text{Tm}^2 (\text{turn})^{-1}$

$$L = 100 \times \frac{10^{-5}}{5} = 0.20 \text{ mH}$$

125 (c)

The DC generator must be mixed wound to withstand the load variation.

126 **(b)**

$$|e| = L\frac{di}{dt} \Rightarrow |e| = 10 \times 10^{-6} \times \frac{1}{10} = 1\mu V$$

127 (a)

As the north pole approaches, a north pole is developed at the face, *i.e.*, the current flows anticlockwise. Finally when it completes the oscillation, no emf is present. Now south pole approaches the other side, *i.e.*, RHS, the current flows clockwise to repel the south pole. This means the current is anticlockwise at the LHS a before. The break occurs when the pendulum is at the extreme and momentarily stationary

128 (d)

$$t = \tau = \frac{L}{R} = \frac{2.5}{0.5} = 5 \text{ sec}$$

129 (b)

$$|e| = \frac{d\phi}{dt} = \frac{BdA}{dt}$$

Now, as the square loop and rectangular loop move out of magnetic field, $\frac{dA}{dt}$ is constant, therefore |e| is constant. But in case of circular and elliptical loops, $\frac{dA}{dt}$ changes. Therefore, |e| does not remain constant

130 (a)

Energy stored = $\frac{1}{2}Li^2$, where Li is magnetic flux

131 (d)

From Faraday's law of electromagnetic induction, the emf induced between center and rim is equal to rate of change of magnetic flux.

$$e = -\frac{d\phi}{dt}$$

Where, $d\phi = B dA$, where B is magnetic field and dA the area.

$$e = -\frac{B \int_0^R dA}{T}$$

$$e = -\frac{B \times \pi R^2}{T}$$

Also, $\omega = \frac{2\pi}{T}$, where *T* is periodic time,

$$e = -\frac{B\pi R^2}{2\pi/\omega}$$
$$= -\frac{BR^2\omega}{2}$$

132 (a)

$$l = 1 \text{ m}, v = 100 \text{ kmh}^{-1}$$

$$= \frac{100 \times 1000}{60 \times 60} = \frac{250}{9} \text{ ms}^{-1}$$

$$e = Blv = 0.18 \times 10^{-4} \times 1 \times \frac{250}{9} = 5 \times 10^{-4} \text{ V}$$

$$= 0.5 \text{ mV}$$

133 (b)

Magnetic flux through the loop is upward and its is increasing due to increasing current along *AB*. Current induced in the loop should have magnetic flux in the downward direction so at to oppose the increase in flux. Therefore, current induced in the loop is clockwise.

135 (a)

$$e = L\frac{di}{dt} \Rightarrow 100 = L \times \frac{4}{0.01} \Rightarrow L = 2.5 H$$

136 **(b**)

 $e \propto rac{d\phi}{dt}$; if $\phi
ightarrow$ maximum then e
ightarrow minimum

137 (d)

$$i = i_0 \left(1 - e^{\frac{-Rt}{L}} \right) \Rightarrow \text{For } i = \frac{i_0}{2}, t = 0.693 \frac{L}{R}$$

$$\Rightarrow t = 0.693 \times \frac{300 \times 10^{-3}}{2} = 0.1 \text{ sec}$$

138 (c)

$$B_p = \frac{\mu_0 I_2}{2R}$$

$$= \frac{4\pi \times 10^{-7} \times 4}{2 \times 0.02\pi} = 4 \times 10^{-5} Wb/m^2$$

$$\begin{split} B_Q &= \frac{\mu_0 I_1}{2R} \\ &= \frac{4\pi \times 10^{-7} \times 3}{2 \times 0.02\pi} = 3 \times 10^{-5} Wb/m^2 \\ &\therefore B = \sqrt{B_p^2 + B_Q^2} \\ &= \sqrt{(4 \times 10^{-5})^2 + (3 \times 10^{-5})^2} \\ &= 5 \times 10^{-5} Wb/m^2 \end{split}$$

139 **(d)**

$$q = Q_0 \cos \omega t$$

$$I = \frac{dq}{dt} = -Q_0 \omega \cdot \sin \omega t$$

$$I_{\text{max}} = C\omega V = V \sqrt{\frac{C}{L}} = 20\sqrt{\frac{16 \times 10^{-6}}{40 \times 10^{-3}}} = 0.4A$$

Induced charge doesn't depend upon the speed of magnet

141 **(a)**
$$\phi = BA = 10 \text{ weber}$$

$$U = \frac{1}{2}Li^{2}$$

= $\frac{1}{2} \times 50 \times 10^{-3} \times 2 \times 2 = 0.1 \text{ J}$

143 **(a)**
$$\eta = \frac{V_s I_s}{V_p I_p} = 0.8 \Rightarrow I_P = \frac{(440)(2)}{(0.8)(220)} = 5 A$$

144 (c)
$$\frac{\Delta i}{\Delta t} = \frac{10}{2} = 5A/\sec \Rightarrow e = L\frac{\Delta i}{\Delta t} = 0.5 \times 5$$

$$= 2.5 \text{ volts}$$

145 (d)

Magnetic field, $\phi_B = BA \cos \theta$

Where θ is the angle between normal to the plane of the coil and magnetic field

Induced emf, $\varepsilon = BA \sin \theta$

Here, $\theta = 0^{\circ}$

: Magnetic flux is maximum and induced emf is zero

Relative velocity = $v - (-v) = 2v = \frac{dl}{dt}$ $e = \frac{Bldl}{dt} \qquad \qquad \left(\frac{dl}{dt} = 2v\right)$

Induced emf e = 2 Blv

148 (b)

The flux associated with coil of area A and magnetic induction B is

$$\phi = BA \cos \theta$$

$$= \frac{1}{2} B\pi r^2 \cos \omega t \qquad \left[\because A = \frac{1}{2} \pi r^2 \right]$$

$$\therefore e_{\text{induced}} = -\frac{d\phi}{dt}$$

$$= -\frac{d}{dt} \left(\frac{1}{2} B\pi r^2 \cos \omega t \right)$$

$$= \frac{1}{2}B\pi r^2 \omega \sin \omega t$$

$$\therefore \text{ power } p = \frac{e_{\text{induced}}^2}{R}$$

$$= \frac{B^2 \pi^2 r^4 \omega^2 \sin^2 \omega t}{4R}$$

Hence,
$$P_{\text{mean}} = \langle p \rangle$$

$$= \frac{B^2 \pi^2 r^4 \omega^2}{4R} \cdot \frac{1}{2} \qquad \left(\because \langle \sin \omega t \rangle = \frac{1}{2} \right)$$

$$= \frac{(B\pi r^2 \omega)^2}{2R}$$

150 (b)

$$\left(\frac{d\phi}{dtr}\right)_{\text{In first case}} = e$$

$$\left(\frac{d\phi}{dt}\right)_{\text{relative velocity } 2v} = 2\left(\frac{d\phi}{dt}\right)_{\text{I case}} = 2e$$

151 (b)

A conducting rod of length l whose one end is fixed, is rotated about the axis passing through its fixed end and perpendicular to its length with constant angular velocity ω . Magnetic field (B) is perpendicular to the plane of the paper.

Emf induced across the ends of the rod is e = BAn

$$= \frac{Bl^2\pi}{T}$$
$$= \frac{1}{2}Bl^2\omega$$

152 **(a)**
$$v_0 = \frac{1}{2\pi\sqrt{(0.25)\times(0.1\times10^{-6})}} = \frac{10^4}{9.93}$$

153 (c)

Eddy currents are set up when a plate swings in a magnetic field. This opposes the motion

154 (c)

$$i = \frac{|e|}{R} = \frac{N}{R} \cdot \frac{\Delta B}{\Delta t} A \cos \theta$$

$$= \frac{20}{100} \times 1000$$

$$\times (25 \times 10^{-4}) \cos 0^{\circ}$$

$$\Rightarrow i = 0.5 A$$

155 **(c)**

$$l = 36 \text{m}, v = 400 \text{ kmh}^{-1}$$

 $= \frac{400 \times 1000}{60 \times 60} = \frac{100}{9} \text{ ms}^{-1}$
 $= \text{V} = 4 \times 10^{-5} \text{T}$
 $e = Blv = 4 \times 10^{-5} \times 36 \times \frac{1000}{9} = 0.16 \text{V}$

156 (a)
Given
$$\frac{di}{dt} = 2A/sec.$$
, $L = 5 H : e = L \frac{di}{dt} = 5 \times 2 = 10 V$

157 **(c)**

$$i = \frac{V}{R} = \frac{10}{2} = 5A$$

$$U = \frac{1}{2}Li^2 = \frac{1}{2} \times 2 \times 25 = 25J$$

158 (b)

When coil is open, there is no current in it, hence no flux associated with it, ie, $\phi = 0$.

Also, we know that flux linked with the coil is directly proportional to the current in the coil,

ie,
$$\phi \propto i$$

Or $\phi = Li$

Where *L* is proportionality constant known as self-inductance.

$$\therefore \qquad L = \frac{\Phi}{i} = 0$$

Again since i = 0, hence $R = \infty$.

159 **(b)**

The magnitude of induced e.m.f. is directly proportional to the rate of change of magnetic flux. Induced charge doesn't depend upon time

160 (c)

Motor e.m.f. equation $E_b = V - I_a R_a$ At starting $E_b = 0$, so I_a will be maximum 162 (d)

Induced emf $e = Bvl \Rightarrow e = Bv(2R) = \frac{2BvL}{\pi}$

163 (c)

Induced emf

$$e = B_H lv$$

= 5.0 × 10⁻⁵ × 2 × 1.50
= 0.15 × 10⁻³V = 0.15 mV

164 (a)

$$|e| = \frac{d\phi}{dt} = B\frac{dA}{dt} = B\frac{d}{dt}(\pi r^2) = 2\pi B r \frac{dr}{dt}$$

165 (a

Initial magnetic flux linked with the loop

$$\begin{aligned} \Phi &= B_1 A_1 \cos \Phi \\ &= 0.1 \times (10 \times 10^{-2})^2 \cos 45^\circ \\ &= \frac{0.1 \times 10^{-2} \times 1}{\sqrt{2}} = \frac{10^{-3}}{\sqrt{2}} \end{aligned}$$

Final magnetic flux linked with the loop, $\phi_2 = 2$

Now, induced emf in the loop $e = \frac{-d\phi}{dt}$

$$= \frac{-\left[\frac{10^{-3}}{\sqrt{2}}\right]}{0.7}$$

∴ Induced current
$$=\frac{e}{R} = \frac{10^{-3}}{1} = 1 \text{ mA}$$

166 (c)

In uniform magnetic field, change in magnetic flux is zero. Therefore, induced current will be zero.

168 (c)

By using
$$e = \frac{1}{2}Bl^2\omega$$

For part AO; $e_{OA} = e_O - e_A = \frac{1}{2}Bl^2\omega$
For part OC; $e_{OC} = e_O - e_C = \frac{1}{2}B(3l)^2\omega$

$$\therefore e_A - e_C = 4 B l^2 \omega$$

170 (b)

Polarity of emf will be opposite in the two cases while entering and while leaving the coil. Only in option (b) polarity is changing.

171 (c)

As inductance L_2 was wound using the similar wire but the direction of winding is reversed, so flux through L_2 is zero.

$$\begin{array}{ll} \therefore & L_2 \propto \varphi = 0 \\ \text{Also,} & L_1 = L_3 \\ \text{Therefore,} & L_1 = L_3, L_2 = 0 \end{array}$$

175 (c)

DC motor is a device which converts electrical energy into mechanical energy. It employs Fleming's left hand rule.

DC generator converts mechanical energy into electrical energy in from of DC. It employs Fleming's right hand rule.

176 (c)

The potential difference across the ends of the conductor

$$V = \frac{1}{2}\omega L^2 B$$

177 (b)

A moving conductor is equivalent to battery of

$$= vBl$$
 (motion emf)

Equivalent circuit

$$I = I_2 + I_2$$

Applying Kirchhoff's law

$$I_1R + IR - vBl = 0 \qquad \dots (i)$$

$$I_2R + IR - vBl = 0$$
 ...(ii)

Adding Eqs. (i) and (ii), we get

$$2IR + IR = 2vBl$$

$$I = \frac{2vBl}{3R}$$

$$I_1 = I_2 = \frac{vBl}{2R}$$

179 (c)

Time in which the current will decay to $\frac{1}{e}$ of its steady value is $t = \tau = \frac{L}{R} = \frac{50}{10} = 5$ seconds

At t = 0 current through L is zero so it acts as open circuit. The given figures can be redrawn as

$$i_1 = 0 \qquad i_2 = \frac{E}{R} \qquad i_3 = \frac{E}{2R}$$

Hence
$$i_2 > i_3 > i_1$$

181 (d)

Whenever the flux of magnetic field through the area bounded by a closed conducting loop changes, an emf is produced in the loop in this

case the magnetic flux ie., number of magnetic lines of force entering and leaving the loop is same hence magnetic flux is zero.

183 (c)

Mutual inductance of the pair of coils depends on distance between two coils and geometry of two

184 (b)

The emf induced is directly proportional to rate at which flux is intercepted which varies directly as the speed of rotation of the generator.

New, speed=
$$\frac{120}{100} \times 1500 \text{ rpm} = 1800 \text{ rpm}$$

E.m.f. or current induces only when flux linked with the coil changes

186 (c)

The efficiency of transformer

Energy obtained from the secondary coil

Energy given to the primary coil

or
$$\eta = \frac{\text{Output power}}{\text{input power}}$$
or
$$\eta = \frac{V_S I_S}{V_D I_D}$$

Given,
$$V_s I_s = 100 \text{ W}$$
, $V_p = V$, $I_p = 0.5 \text{ A}$
Hence, $\eta = \frac{100}{220 \times 0.5} = 0.90 = 90\%$

187 (c)

$$\frac{V_s}{V_p} = \frac{N_s}{N_p} \Rightarrow V_s = \frac{N_s}{N_p} \times V_p = \frac{10}{200} \times 240 = 12 \ volts$$

Whenever a magnet is moved either towards or away from a conducting coil, the magnetic flux linked with the coil changes and therefore, an emf is induced in the coil. The magnitude of induced emf

$$e = -N \frac{d\Phi}{dt}$$
$$e = -N \frac{d(BA)}{dt}$$

Time interval dt, depends on the speed with which the magnet is moved.

Therefore, the induced emf is independent of the resistance of the coil.

189 (c)

In case of motional emf, the motion of the conductor in the field exerts a force on the free

charge in the conductor, so that one end of the conductor becomes positive, while the other negative resulting in a potential difference across its ends due to which a non-conservative electric field is set up in the conductor. In steady state the magnetic force on the free charge is balanced by the electric force due to induced field.

$$qE = qvB$$
or
$$q\left(\frac{v}{l}\right) = qvB$$
ie,
$$V = Bvl$$

So, the induced emf between tip of nose and tail of helicopter is given by

$$e = Bvl$$

= $5 \times 10^{-3} \times 10 \times 100 = 5V$

190 (a)

$$\therefore L \propto N^2 r; \frac{L_1}{L_2} = \left(\frac{N_1}{N_2}\right)^2 \times \frac{r_1}{r_2}$$

$$\Rightarrow \frac{L}{L_2} = \left(\frac{1}{2}\right)^2 \times \left(\frac{r}{r/2}\right) = \frac{1}{2}; L_2 = 2L$$

191 (a)

According to Gauss's theorem in magnetism, surface integral of magnetic field intensity over a surface (closed or open) is always zero, *ie*,

$$\oint \mathbf{B} \cdot \mathbf{dA} = 0$$

192 (a)

Induced e.m.f. $\varepsilon = \frac{d\phi}{dt} = -(100t)$

Induced current i at t = 2 sec

$$= \left| \frac{\varepsilon}{R} \right| = + \frac{100 \times 2}{400} = +0.5 Amp$$

193 (a)

$$|e| = M \frac{di}{dt} \Rightarrow 8 \times 10^{-3} = M \times 3 \Rightarrow M = 2.66mH$$

194 (a)

In a transformer

$$\therefore \frac{N_P}{N_S} = \frac{I_S}{I_P}$$

$$\frac{50}{200} = \frac{I_S}{4}$$

$$\Rightarrow I_S = 1A$$

195 (b)

$$e_0 = \omega NBA = (2\pi v)NB(\pi r^2) = 2 \times \pi^2 v NBr^2$$
$$= 2 \times (3.14)^2 \times \frac{1800}{60} \times 4000 \times 0.5 \times 10^{-4}$$
$$\times (7 \times 10^{-2})^2$$

= 0.58 V

196 (b)

The electric field induced by changing magnetic field depends upon the rate of change of magnetic flux, hence it is non-conservative.

198 (b)

$$L = \frac{\mu_0 N^2 A}{l} = \frac{4\pi \times 10^{-7} \times (500)^2 \times 20 \times 10^{-4}}{0.5}$$

= 1.25 mH

199 (d)

$$U = \frac{1}{2}Li^2 \Rightarrow U = \frac{1}{2} \times 5 \times \left(\frac{100}{10}\right)^2 = 250 J$$

200 (d)

$$|e| = \frac{d\phi}{dt}$$

$$= \frac{8 \times 10^{-4}}{0.4} = 2 \times 10^{-3} \text{V}$$

201 (a)

$$e = -L\frac{di}{dt};$$

$$\frac{di}{dt} = 10 \times 100\pi \cos(100\pi t)$$

$$L = \frac{e}{\frac{di}{dt}} = \frac{5\pi}{10 \times 100\pi} = 5 \times 10^{-3}H = 5 mH$$

202 (c)

$$|e| = L\frac{di}{dt} \Rightarrow 30 = L \times \frac{(6-0)}{0.3} \Rightarrow L = 1.5 H$$

203 (c)

When key k is pressed, current through the electromagnet start increasing, i.e., flux linked with ring increases which produces repulsion effect

204 (b)

$$e = \frac{d\Phi}{dt} = 6t + 4 + 0$$

At $t = 2$ s, $e = 6 \times 2 + 4 = 16$ V

207 (a)

Self inductance of a solenoid

$$L=\frac{\mu_0N^2A}{l}=\frac{\mu_0N^2\pi r^2}{l}$$

Where *l* is the length of the solenoid, *N* is the total number of turns of the solenoid and *A* is the area of cross-section of the solenoid

$$\therefore \frac{L_1}{L_2} = \left(\frac{N_1}{N_2}\right)^2 \left(\frac{r_1}{r_2}\right)^2 \left(\frac{l_2}{l_1}\right)$$
Here, $N_1 = N_2$, $\frac{l_1}{l_2} = \frac{1}{2}$, $\frac{r_1}{r_2} = \frac{1}{2}$

$$\therefore \frac{L_1}{l_2} = \left(\frac{1}{2}\right)^2 \left(\frac{2}{1}\right) = \frac{1}{2}$$

208 (a)

Since, electron is moving from left to right, the flux linked with loop will first increase and then decrease as the electron passes by. Therefore, induced current *I* in the loop will be first clockwise and then will move in anticlockwise direction as the electron passes by.

209 **(b)**

$$e = -M \frac{di}{dt} = -1.5 \frac{(1-0)}{(T/4)} = -\frac{6}{T}, T = \frac{2\pi}{\omega} = \frac{2\pi}{200}$$

$$= \frac{\pi}{100}$$

$$\Rightarrow |e| = \frac{600}{\pi} = 190.9 \, V \approx 191 V$$

210 (c)

The energy stored in an inductor

$$U = \frac{1}{2}LI^2$$

211 (b)

Induced emf
$$e = \frac{-NA(B_2 - B_1)\cos\theta}{\Delta t}$$

$$= \frac{50 \times \pi \times (3 \times 10^{-2})^2 [0.35 - 0.10] \cos 0^{\circ}}{2 \times 10^{-3}}$$
$$= 17.7 \text{ V}$$

212 (a)

$$\frac{V_s}{V_n} = \frac{N_s}{N_n} \Rightarrow \frac{V_s}{20} = \frac{5000}{500} \Rightarrow V_s = 200 \text{ V}$$

Frequency remains unchanged

213 (d)

$$q = -\frac{N}{R}(B_2 - B_1)A\cos\theta$$
$$32 \times 10^{-6} = -\frac{100}{(160 + 40)}(0 - B) \times \pi$$
$$\times (6 \times 10^{-3})^2 \times \cos 0^\circ$$

$$\Rightarrow B = 0.565 T$$

214 (b)

The direction of current in the solenoid is anticlockwise as seen by observer. On displacing it towards the loop a current in the loop will be induced in a direction so as to oppose the approach of solenoid. Therefore the direction of induced current as observed by the observer will be clockwise

215 **(b)**

$$\Delta Q = \frac{\Delta \phi}{R} = \frac{(10-2)}{2} = 4C$$

216 **(b**)

A choke coil is an electrical appliance used for controlling current in an a.c. circuit. In a choke coil $R \ll X_L$ to avoid power dissipation

218 (a)

Mutual inductance between coils is $M = K\sqrt{L_1L_2}$

$$\Rightarrow M = 1\sqrt{2 \times 10^{-3} \times 8 \times 10^{-3}} \ [\because K = 1]$$

= 4 \times 10^{-3} = 4mH

220 (d)

Conductor cuts the flux only when it moves in the direction of M

221 (a)

$$\frac{V_s}{V_p} = \frac{N_s}{N_p} = k \Rightarrow \frac{V_s}{30} = \frac{3}{2} \Rightarrow V_s = 45 \text{ V}$$

222 **(b)**

$$e = M \frac{di}{dt} \Rightarrow M = \frac{15000}{3} \times 0.001 = 5 H$$

224 (c)

$$P_s = V_s i_s \Rightarrow 1000 = V_s \times 8 \Rightarrow V_s = \frac{1000}{8}$$

 $\frac{V_p}{V_s} = \frac{N_p}{N_s} \Rightarrow \frac{(1000/8)}{500} = \frac{100}{N_s} \Rightarrow N_s = 400$

225 (b)

This is the case of periodic EMI

226 (b)

There is no induced emf in the part AB and CD because they are moving along their length while emf induced between B and C i.e., between A and D can be calculated as follows

Induced emf between B and C = Induced emf between A and $B = Bv(\sqrt{2}l) = 1 \times 1 \times 1 \times \sqrt{2} = 1.41 \ volt$

227 (d)

When switch S is closed magnetic field lines passing through Q increases in the direction from right to left. So, according to Lenz's law induced current in Q i.e. I_{Q_1} will flow in such a direction so that the magnetic field lines due to I_{Q_1} passes from left to right through Q. This is possible when I_{Q_1} flows in anticlockwise direction as seen by E. Opposite is the case when switch S is opened, i.e., I_{Q_2} will be clockwise as seen by E

231 (d)

The emf generated would be maximum when flux (cutting) would be maximum ie, angle between area vector of coil and magnetic field is 0°. The emf generated is given by [as a function of time]

$$e = NBA\omega\cos\omega t$$

$$\Rightarrow$$
 $e_{max} = NAB\omega$

$$\frac{V_s}{V_p} = \frac{i_p}{i_s} \Rightarrow i_p = \frac{11000 \times 2}{220} = 100 A$$

233 (d)

The emf induces when there is change of flux. As in this case there is no change of flux, hence no emf will be induces in the wire

234 (a)

 $L \propto n$ (Number of turns). For straight conductor n=0, hence L=0

235 (a)

As,
$$I = \frac{E}{R} = \frac{d\phi}{Rdt}$$

or $Idt = \frac{d\phi}{R}$

Integrating

$$\int Idt = \int \frac{d\Phi}{R}$$
$$q = \frac{\Phi}{R}$$

or

If coil contains N turns, then $q = \frac{N\phi}{R}$

If there is flux change $\Delta \phi$, then

$$q = \frac{N\Delta\phi}{R}$$

= $\frac{1}{7} \times (1.35 - 0.79) = 0.08 \text{ C}$

236 (d)

$$d = L\frac{di}{dt} \Rightarrow 12 = L \times \frac{45}{60} \Rightarrow L = 16H$$

237 (d)

When the two coils are joined in series such that the winding of one is opposite to the other, then the emf produced in first coil is 180° out of phase of the emf produced in second coil. Thus, emf produced in first coil is negative and the emf produced in second coil is positive, so net inductance is

$$L = L_1 + L_2 = L + L$$

From Faraday's law of electromagnetic induction $\phi = Li$, where ϕ is flux and i the current

$$L = -\frac{\Phi}{i} + \frac{\Phi}{i}$$

If at any instant, current through the circuit is i then applying Kirchhoffs voltage law, iR + e = $E \Rightarrow e = E - iR$. Therefore, graph between e and iwill be a straight line having negative slope and having a positive intercept

239 (a)

The induced emf is given by

$$e = -M\frac{di}{dt} \qquad ...(i)$$

Where *M* is coefficient of mutual inductance, $\frac{di}{dt}$ is rate of change of current.

Also, mutual inductance of two coaxial solenoids is given by

$$M = \frac{\mu_0 N_1 N_2 A}{l} \qquad ...(ii)$$

From Eqs. (i) and (ii), we get

$$e = \frac{\mu_0 N_1 N_2 A}{l} \times \frac{di}{dt}$$

Given,
$$N_1 = 2000$$
, $N_2 = 300$, $A = 1.2 \times 10^{-3} \text{m}^2$

$$\frac{di}{dt} = \frac{2 - (-2)}{0.25} = \frac{4}{0.25}$$

$$= \frac{4\pi \times 10^{-7} \times 2000 \times 300 \times 1.2 \times 10^{-3} \times 4}{0.3 \times 0.25}$$

$$\Rightarrow e = \frac{4\times 3.14 \times 2\times 3\times 1.2\times 4\times 10^{-5}}{0.3\times 0.25}$$

$$\Rightarrow \qquad e = \frac{4 \times 3.14 \times 2 \times 3 \times 1.2 \times 4 \times 10^{-5}}{0.3 \times 0.25}$$

$$|e| = 4.8 \times 10^{-2} \text{V}$$

240 (b)

Here, $l = 50 \text{ m}, v = 360 \text{ kmh}^{-1} = 100 \text{ ms}^{-1}$

 $B = 2 \times 10^{-4} \, \text{Wbm}^{-2}$

Potential difference $e = Blv = 2 \times 10^{-4} \times 50 \times$ 100 = 1V.

241 (b)

The emf induced between ends of conductor

$$e = \frac{1}{2}B\omega L^{2}$$

$$= \frac{1}{2} \times 0.2 \times 10^{-4} \times 5 \times (1)^{2}$$

$$= 0.5 \times 10^{-4} \text{V}$$

$$= 5 \times 10^{-5} \text{V} = 50 \mu \text{V}$$

242 (c)

The induced emf is

$$e = -L\frac{di}{dt}$$

di = (2-10)A = -8 A, dt = 0.1s, e =Here, 3.28 V.

$$\therefore 3.28 = -\frac{L(-8)}{0.1}$$

$$\therefore L = \frac{3.28 \times 0.1}{8} = 0.04H$$

244 (d)

Emf induced in the wire is given by

$$e = Blv$$

Given,
$$l = 50 \text{ cm} = 0.5 \text{ m}$$

 $v = 300 \text{ m} - \text{min}^{-1} = \frac{300}{60} = 5 \text{ ms}^{-1}$
 $e = 2 \text{ V}$

Magnetic field, $B = \frac{e}{lv} = \frac{2}{0.5 \times 5} = 0.8 \text{ T}$

245 (d)

As transformers works only on AC, so when electrolytic DC cell of emf 2 V is connected to primary of transformer then there is no output across its output.

246 (b)

$$I = t^2 e^{-t} \Rightarrow \frac{dI}{dt} = 2te^{-t} - t^2 e^{-t} = te^{-t}(2-t)$$

The induced emf is $\varepsilon = -L \frac{dI}{dt}$

According to given problem, $\varepsilon = 0 \Rightarrow \frac{dI}{dt} = 0$

[Since $L \neq 0$]

Or
$$e^{-t}t(2-t) = 0$$
 either $t = 0$ or $t = 2$ s $t = 2$ s matches with the option (b)

247 (a)

Mutual inductance for two concentric coplanar circular coils,

$$M = \frac{\pi \mu N_1 N_2 r^2}{2R}$$

Here,
$$N_1 = N_2 = 1$$

$$\therefore \qquad M = \frac{\pi \mu_0 r^2}{2R}$$

$$L = \mu_0 N^2 A/l$$

249 (b)

$$t = \tau = \frac{L}{R} = \frac{60}{30} = 2 \sec \theta$$

250 (b)

$$N_p$$
: $N_s = 1$: 10 and $V_s = 0.5 \times 200 = 100 V$

$$\frac{\overrightarrow{V_s}}{V_p} = \frac{N_s}{N_p} \Rightarrow \frac{100}{V_p} = \frac{10}{1} \Rightarrow V_p = 10 \text{ V}$$

$$\frac{i_p}{i_s} = \frac{N_s}{N_p} \Rightarrow \frac{i_p}{0.5} = \frac{10}{1}, i_p = 5 \text{ amp}$$

251 (a

$$L_S = L_1 + L_2 = 10H$$
 ...(i)
 $L_P = \frac{L_1 L_2}{L_1 + L_2} = 2.4H$...(ii)

On solving (i) and (ii) $L_1L_2 = 24$...(iii)

Also
$$(L_1 - L_2)^2 = (L_1 + L_2)^2 - 4L_2L_2$$

$$\Rightarrow (L_1 - L_2)^2 = (10)^2 - 4 \times 24 = 4 \Rightarrow L_1 - L_2$$

252 (a)

Current at any instant of time t after closing an L- R circuit is given by $I=I_0\left[1-e^{\frac{-R}{L}t}\right]$

Time constant $t = \frac{L}{R}$

$$iller I_0 \left[1 - e^{\frac{-R}{L} \times \frac{L}{R}} \right] = I_0 (1 - e^{-1}) = I_0 \left(1 - \frac{1}{e} \right)$$

$$= I_0 \left(1 - \frac{1}{2.718} \right) = 0.63I_0 = 63\% \text{ of } I_0$$

253 (c)

According to Faraday's law, "the induced emf in a closed loop equals the time rate of change of magnetic flux through the loop."

ie.,
$$e = -\frac{d\phi_B}{dt}$$

Hence, induced emf in a coil depends on rate of change of flux.

254 (d

Time constant = $\frac{L}{R} = \frac{40}{9} = 5 \text{ sec}$

255 (c)

If there are no losses then $p_i = p_0$

256 (c)

For step-up transformer,

$$V_s > V_p$$
 and $I_s < I_p$

For an ideal transformer,

$$V_{\rm S}I_{\rm S}=V_{\rm p}I_{\rm p}$$

$$240000I_s = 100 \times 4000$$

or
$$I_s = 1.67 \,\text{A}$$

$$\begin{split} \varphi &= \mu_r \mu_0 \frac{N^2}{l} A i \\ &= 600 \times 4\pi \times 10^{-7} \times 50 \times 50\pi \\ &\times \frac{(7.5 \times 10^{-3})^2 \times 3}{6 \times 10^{-1}} \end{split}$$

$$= 1.66 \times 10^{-3}$$
Wb $= 1.66$ mWh

258 (d)

$$L = 50 \times 10^{-3} H$$

$$\frac{dI}{dt} = \frac{(1-0)}{0.1} = 10$$

$$\varepsilon = \frac{L. dI}{dt} = 50 \times 10^{-3} \times 10 = 50 \times 10^{-2}$$

= 0.5 volt

$$\frac{N_s}{N_p} = \frac{l_p}{l_s} \text{ or } \frac{25}{1} = \frac{l_p}{2} \Rightarrow l_p = 50 \text{ A}$$

$$\phi = NBA\cos\theta = 10 Ba^2\cos\omega t$$

$$e = -\frac{d\phi}{dt} = -\frac{d}{dt}(10 Ba^2\cos\omega t)$$

$$= 10 Ba^2\omega\sin\omega t$$

262 (d)

Transformer doesn't work on dc

263 (d)

Potential difference between O and A is $V_0 - V_A = \frac{1}{2}Bl^2\omega$ O and B is $V_0 - V_B = \frac{1}{2}Bl^2\omega$ So $V_A - V_B = 0$

$$\vec{B}$$
 \uparrow ω

$$e = M \frac{di}{dt} = 0.005 \times \frac{d}{dt} (i_0 \sin \omega t)$$
$$= 0.005 \times i_0 \omega \cos \omega t$$

$$\therefore e_{\max} = 0.005 \times 10 \times 100\pi = 5\pi$$

265 (a)

$$q = \frac{q\phi}{R} = \frac{NA(B_2 - B_1)}{R} = \frac{N \pi r^2 (B_2 - B_1)}{R}$$
$$= \frac{1000 \times \pi \times 10^{-4} \times (0.012 - 0)}{(200 + 400)}$$
$$= 6.3 \times 10^{-6} C. = 6.3 \mu C$$

266 (b)

When the S-pole of magnet is moved towards the coil, then by Lenz's law the face of coil, towards magnet becomes S-pole and the current flows clockwise to cancel change in the magnetic flux. So, to bring the magnet to the coil, more work has to be done against the force of repulsion produced between them. So, the galvanometer shows deflection to the left. Now when the S-pole is moved away, a current flows in anti-clockwise direction to make the face of the coil towards magnet, a N-pole. Thus, will try to attract the magnet. So, the galvanometer shows the deflection to the right. Since, flux varies hence, amplitude will not be constant and will decrease.

267 (a)

When the secondary coil circuit is open, the magnetic flux in the core is produced by the primary current only. When the secondary circuit is closed, the currents in the secondary coil also produce magnetic flux in the core but in opposite direction. This decreases the core flux and hence reduces the back emf more current is drawn in the primary coil. Hence, power factor is no longer zero. The power factor has increased or the phase difference is no longer 90°, i. e., phase difference has decreased. Thus, dynamic resistance has increased

268 (b)

For $r \geq a, \oint \vec{E} d\vec{I}$ $=\left|\frac{d\phi}{dt}\right|=A\left|\frac{dB}{dt}\right|$ $E(2\pi r) = \pi a^2 \left| \frac{dB}{dt} \right| \frac{a}{2}$ $E = \frac{a^2}{2r} \left| \frac{dB}{dt} \right|$

: Induced electric filed, $E \propto \frac{1}{r}$

269 (a)

With rise in current in coil A flux through B increases. According to Lenz's law repulsion occurs between A and B

270 (a)

$$N\phi = Li \Rightarrow \phi = \frac{Li}{N} = \frac{8 \times 10^{-3} \times 5 \times 10^{-3}}{400} = 10^{-7}$$

= $\frac{\mu_0}{4\pi} Wb$

271 (a)

$$\frac{V_p}{V_c} = \frac{N_p}{N_c} \Rightarrow N_p = \left(\frac{220}{2200}\right) 2000 = 200$$

272 (a)

The inductances are in parallel $\Rightarrow L_{eq} = \frac{L}{3} = \frac{3}{3} =$

273 **(b)**

274 (b)

Because there is no change in flux linked with coil

275 (a)

Induced current in the circuit $i = \frac{Bvl}{R}$

Magnetic force acting on the wire $F_m = Bil = B\left(\frac{Bvl}{R}\right)l$

 $\Rightarrow F_m = \frac{B^2 v l^2}{R}$. External force needed to move the rod with constant velocity

$$(F_m) = \frac{B^2 v l^2}{R} = \frac{(0.15)^2 \times (2) \times (0.5)^2}{3}$$
$$= 3.75 \times 10^{-3} N$$

277 **(b)**

$$\frac{N_s}{N_n} = \frac{V_s}{V_n} = \frac{2200}{220} = \frac{10}{1}$$

278 (b)

$$V = 200V; r = 10\Omega$$

$$R' = 10 + 100\Omega = 110\Omega$$

$$I = \frac{V}{R'} = \frac{220}{110} = 2A$$

$$P = I^2 R = 4 \times 100 = 400W$$

279 (d)

Induced EMF= $\frac{N\Delta\phi}{\Delta t}$

Peak value = $NBA\omega = 100V$...(i)

Here $2\pi r_1 \times 100 = 2\pi r_2 \times N_2$

$$N_2 = \frac{r_1 \times 100}{r_2} = \frac{1 \times 100}{2} = 50$$

Now

$$e_0 = \frac{N}{2} \times B \times 4A \times \omega = 200$$
V.

280 (b)

As current is decreasing, magnetic flux linked with the loop in the upward direction (acceleration to right hand thumb rule) is decreasing. Current induced in loop must be anticlock-wise to oppose the decrease in magnetic flux.

281 **(c)**

As magnetic flux linked with the loop is changing, emf induced in the loop is e = BLv.

282 (c)

As L corresponds to m and v corresponds to current i

 $mv \rightarrow L \times i$.

283 (d)

The rate of increase of current

$$\begin{split} &= \frac{di}{dt} = \frac{d}{dt} i_0 \Big(1 - e^{-Rt/L} \Big) = \frac{d}{dt} i_0 - \frac{d}{dt} i_0 e^{-Rt/L} \\ &= 0 - i_0 e^{-Rt/L} \cdot \frac{d}{dt} \left(-\frac{Rt}{L} \right) = i_0 \frac{R}{L} e^{-Rt/L} \\ &= \frac{50}{180} \times \frac{180}{5 \times 10^{-3}} \times e^{-(180 \times 0.001)/(5 \times 10^{-3})} \\ &= 10^4 \times e^{-36} A/sec \end{split}$$

284 (a)

Transformer works on ac only

285 (d)

Rod is moving towards east, so induced emf across it's end will be $e = B_V vl = (B_H \tan \phi)vl$

$$e = 3 \times 10^{-4} \times \frac{4}{3} \times (10 \times 10^{-2}) \times 0.25$$
$$= 10^{-5}V = 10\mu V$$

288 (c)

$$\phi = (B)(\pi r^2) \Rightarrow e = \frac{d\phi}{dt} = (B)(2\pi r) \left(\frac{dr}{dt}\right)$$
$$= (0.025)(2\pi)(2 \times 10^{-2})(10^{-3}) = \pi \,\mu V$$

290 (d)

Magnetic field at the location of coil (2) produced due to coil (1)

$$B_1 = \frac{\mu_0}{4\pi} \cdot \frac{2M}{l^3}$$

Flux linked with coil (2)

$$\phi = B_1 A_2 = \frac{\mu_0}{4\pi} \frac{2i(\pi a^2)}{l^3} \times (\pi a^2)$$

Also
$$\phi_2 = Mi \Rightarrow M = \frac{\mu_0 \pi a^4}{2l^3}$$

291 (c)

Lenz's law restates the law of conservation of energy.

292 (d)

When two solenoids of inductance L_0 are connected in series at large distance and current i is passed through them, the total flux linkage ϕ_{total} is the sum of the flux linkages L_0i and L_0i , ie,

$$\phi_{\text{total}} = L_0 i + L_0 i$$

If L be the equivalent inductance of the system, then

$$\phi_{\text{total}} = Li$$

$$Li = L_0i + L_0i$$

$$L = 2L$$

When solenoids are connected in series with one inside the other and senses of the turns coinciding,

then there will be mutual inductance L between them. In this case the resultant induced emf in the coils is the sum of the emf s e_1 and e_2 in the respective coils, ie,

$$e = e_1 + e_2$$

$$= \left(-L_0 \frac{di}{dt} \pm L_0 \frac{di}{dt} \right) + \left(-L_0 \frac{di}{dt} \pm L_0 \frac{di}{dt} \right)$$

Where (+) sign is for positive coupling and (-) sign for negative coupling.

But,
$$e = -L \cdot \frac{di}{dt}$$

$$\therefore -L \frac{di}{dt} = -L_0 \frac{di}{dt} - L_0 \frac{di}{dt} \pm 2L_0 \frac{di}{dt}$$
ie,
$$L = L_0 + L_0 + 2L_0$$

$$= 4L_0$$
 (for positive)

coupling)

When solenoids are connected in series with one inside the other with senses of the turns opposite, then their is negative coupling.

So,
$$L = L_0 + L_2 - 2L_0 = 0$$

293 (a)

Current in the inner coil $i = \frac{e}{R} = \frac{A_1}{R_1} \frac{dB}{dt}$

Length of the inner coil = $2\pi a$

So it's resistance $R_1 = 50 \times 10^{-3} \times 2\pi(a)$

$$\therefore i_1 = \frac{\pi a^2}{50 \times 10^{-3} \times 2\pi(a)} \times 0.1 \times 10^{-3} = 10^{-4}A$$

According to lenz's law direction of i_1 is clockwise Induced current in outer coil $i_1 = \frac{e_2}{e_2} = \frac{A_2}{e_3} \frac{dB}{dB}$

Induced current in outer coil
$$i_2 = \frac{e_2}{R_2} = \frac{A_2}{R_2} \frac{dB}{dt}$$

$$\Rightarrow i_2 = \frac{\pi b^2}{50 \times 10^{-3} \times (2\pi b)} \times 0.1 \times 10^{-3}$$
$$= 2 \times 10^{-4} A(CW)$$

$$\frac{E_p}{E_s} = \frac{N_p}{N_s} \Rightarrow \frac{200}{E_s} = \frac{100}{20} \Rightarrow E_s = 40 \text{ V}$$

295 (d)

We can show the situation as

Since, loop is moving away from the wire, so the direction of current in the loop will be as shown in the figure.

Net magnetic field on the loop due to wire

$$B = \frac{\mu_0 i}{2\pi} \left(\frac{1}{x} - \frac{1}{l+x} \right)$$
$$= \frac{\mu_0 i l}{2\pi x (l+x)}$$

So, the magnitude of the emf in the loop

$$e = vBb = \frac{\mu_0 i l \ v \ b}{2 \pi x (1+x)}$$

297 (c)

Given, self inductance, $L = 1.8 \times 10^{-4} \text{H}$

Resistance, $R = 6\Omega$

When self inductance and resistance is broken up into identical coils.

Then, self inductance of each oil

$$=\frac{1.8\times10^{-4}}{2}$$
H

Resistance of each oil

$$=\frac{6\Omega}{2}=3\Omega$$

Coil are then connected in parallel

$$L' = \frac{\frac{1.8}{2} \times 10^{-4} \times \frac{1.8}{2} \times 10^{-4}}{\frac{1.8}{2} \times 10^{-4} + \frac{1.8}{2} \times 10^{-4}}$$
$$= 0.45 \times 10^{-4} \text{H}$$

and
$$R' = \frac{3 \times 3}{3+3} = 1.5\Omega$$

Time constant =
$$\frac{L'}{R'}$$

= $\frac{0.45 \times 10^{-4}}{1.5}$ = 0.3×10^{-4} s

298 (b)

Induced current are clockwise. Therefore, induced magnetic field is into the plane of the paper. As it opposes the increasing inducing filed, the inducing field must be out of the plane of the paper.

299 (a)

$$A = 10^{-3} \text{m}^2$$

$$l = 31.4 = 31.4 \times 10^{-2} \text{m}$$

$$n = 10^{-3}$$

$$\phi = Li$$

$$BA = Li$$

$$\mu_0 NiA = Li$$

$$L = \mu_0 nlA$$

$$= 4\pi \times 10^{-7} \times 10^3 \times 31.4 \times 10^{-2}$$

$$= 4 \text{mH}$$

301 (c)

In a transformer

 Iron losses In actual iron cores, inspite of lamination, eddy current are produced.
 The magnitude of eddy current may

however be small and a part of energy is lost as the heat produced in the iron core.

- 2. **Copper losses** In practice, the coils of the transformer possess resistance. So, a part of the energy is lost the due to the heat produced in the resistance of the coil.
- Flux leakage The coupling between the coils is seldom perfect. So whole of the magnetic flux produced by the primary coil is not linked up with the secondary coil.

And hysteresis loss, humming losses also occur in the transformer.

302 **(a)**

$$\frac{N_s}{N_p} = \frac{i_p}{i_s} \Rightarrow \frac{i_p}{i_s} = \frac{4}{5}$$

303 **(b)**
$$e_0 = nAB\omega$$
 $= 100 \times 0.1 \times 0.4 \times (2\pi \times 60) = 150V$

By Faraday's second law, induced emf
$$e = -\frac{Nd\phi}{dt} \text{ which gives } e = -L\frac{dI}{dt}$$

$$\therefore |e| = 2 \times 10^{-3} \times 20 \times 10^{-3} \text{V} = 40 \text{uV}$$

305 **(b)** With the increasing speed, ω increases. Thus current reduces due to increase in the back e.m.f. Moreover $i=\frac{V-K\omega}{R}$. More ω will lead to the lesser current

306 (a)

If bar magnet is falling vertically through the hollow region of long vertical copper tube then the magnetic flux linked with the copper tube (due to 'non-uniform' magnetic field of magnet) changes and eddy currents are generated in the body of the tube by Lenz's law. The eddy currents oppose the falling of the magnet which therefore experience a retarding force. The retarding force increases with increasing velocity of the magnet and finally equals the weight of the magnet. The magnet then attains a constant final terminal velocity *i. e.*, magnet ultimately falls with zero acceleration in the tube

307 **(d)** When 5Ω resistor is pulled left at $0.5 \ m/sec$ induced emf in the said resistor $= e = vBl = 0.5 \times 2 \times 0.1 = 0.1 \ V$

Resistor 10Ω is at rest so induced emf in it (e = vBl) be zero

Now net emf in the circuit = 0.1V and equivalent resistance of the circuit $R = 15\Omega$

Hence current $i = \frac{0.1}{15} amp = \frac{1}{150} amp$

And its direction will be anti-clockwise (according to Lenz's law)

308 **(b)**

$$\phi = li$$

$$l = \frac{\phi}{i} = \frac{10 \times 10^{-6}}{2 \times 10^{-3}} = 5 \times 10^{-3} = 5 \text{mH}$$

309 **(b)**
Here,
$$\eta = \frac{e}{E} \times 100$$

$$\frac{40}{100} = \frac{e}{E}$$

$$\Rightarrow e = \frac{2E}{5} = \frac{2 \times 200}{5} = 80 \text{ V}$$
But $I = \frac{E - e}{R}$

$$\therefore 10 = \frac{200 - 80}{R}$$

$$10R = 120$$

$$\therefore R = 12\Omega$$

310 **(b)**
$$i = i_0 \left(1 - e^{-\frac{R}{L}t} \right). \text{ At } t = 0, i = 0$$
 At $t \gg \tau (= L/R), i = i_0$

311 **(b)**According to Lenz's law
312 **(a)**

On rotating the magnet, no change in flux is linked with the coil. Therefore, induced emf/ current is zero.

313 (c)
Induced emf e = Bvl v = velocity of train $= 72 \times \frac{5}{18} = 20 \text{ms}^{-1}$ $= 2 \times 10^{-5} \times 20 \times 1$ $= 2 \times 10^{-5} \times 20$ $= 40 \times 10^{-5} \text{ V}$ $= 40 \times 10^{-2} \text{mV} = 0.4 \text{mV}$

$$= 40 \times 1$$
14 (c)
$$|e| = L \frac{di}{dt} = L \times \frac{10}{0-9}$$

$$L = 1.1 \text{ H}$$

316 (b)

We know that for step down transformer V_n i_n

$$V_p > V_s$$
 but $\frac{v_p}{v_s} = \frac{i_s}{i_p} \Rightarrow i_s > i_p$

Current in the secondary coil is greater than the primary

317 (d)

Considering the larger loop to be made up of four rods each of length L, the field at the centre,

i. e., at a distance $\left(\frac{L}{2}\right)$ from each rod, will be

$$B = 4 \times \frac{\mu_0}{4\pi} \frac{l}{d} [\sin \alpha + \sin \beta]$$

ie,
$$B = 4 \times \frac{\mu_0}{4\pi} \frac{I}{\left(\frac{L}{2}\right)} \times 2 \sin 45^\circ$$

ie,
$$B_1 = \frac{\mu_0}{4\pi} \frac{8\sqrt{2}}{L} I$$

So, the flux with smaller loop

$$\phi = B_1 S_2 = \frac{\mu_0}{4\pi} \frac{8\sqrt{2}}{L} l^2 I$$

and hence,
$$M = \frac{\Phi_2}{I} = 2\sqrt{2} \frac{\mu_0}{\pi} \frac{l^2}{L}$$

or $M \propto \frac{l^2}{L}$

318 (c)

As per the phenomenon of mutual induction when two coils are placed near each other and current is passed through one of them then due to the phenomenon of electromagnetic induction current is induced in the other coil, in this case since, current in loop A increases with time, hence direction of current induced in loop B will be same as direction of current in loop A.

319 (c)

$$|e| = L \left| \frac{di}{dt} \right| = 0.5 \times \frac{10}{2} = 2.5V$$

320 (a)

$$|e| = L \frac{di}{dt} \Rightarrow 1 = \frac{L \times [10 - (-10)]}{0.5} \Rightarrow L = 25mH$$

321 (d

Induced change
$$Q = -\frac{nBA}{R}(\cos\theta_2 - \cos\theta_1) = -\frac{nBA}{R}(\cos 180^\circ - \cos 0^\circ) \Rightarrow B = \frac{OR}{2nA}$$

323 (c)

$$e = -N\left(\frac{\Delta B}{\Delta t}\right) \cdot A \cos \theta$$
$$= -100 \times \frac{(6-1)}{2}$$
$$\times (40 \times 10^{-4}) \cos \theta$$

$$\Rightarrow |e| = 1 V$$

324 (a)

Induced e.m. f. e =
$$M \frac{di}{dt} \Rightarrow 100 \times 10^{-3} = M \left(\frac{10}{0.1}\right)$$

 $\therefore M = 10^{-3}H = 1 \text{ mH}$

325 (c)

A uniformly moving charge produces both electric and magnetic fields. So, energy associated with it will be partially due to magnetic field and partially due to electric field.

326 (c)

$$e = \frac{1}{2}B\omega r^2 = \frac{1}{2} \times 0.1 \times 2\pi \times 10 \times (0.1)^2$$
$$= \pi \times 10^{-2} V$$

327 (c)

$$\frac{N_s}{N_P} = \frac{I_P}{I_s} \Rightarrow \frac{2}{3} = \frac{3}{I_s} \Rightarrow I_s = \frac{3 \times 3}{2} \Rightarrow I_s = 4.5$$

328 (d)

$$\Phi = t^2 + 3t - 7$$

: Induced emf

$$e = -\frac{d\phi}{dt} = -(3t^2 + 3) = -3t^2 - 3$$

At

$$t = 0$$
: $e = -3 \text{ V}$

Therefore, shape of graph will be a parabola not through origin.

329 (a)

The emf induced in the inductor is given by

$$|e| = L \frac{di}{dt}$$

Here, induced current $=\frac{V}{R} = \frac{10}{5} = 2A$

Circuit switches off in 1 millisecond

Or

$$dt = 1 \times 10^{-3} s$$

and

$$L = 10 H$$

: Induced emf in inductor is

$$|e| = 10 \times \frac{2}{1 \times 10^{-3}} = 2 \times 10^4 \text{V}$$

330 (a)

Speed of the magnet

Speed of the coil

$$v_2 = \frac{1}{0.5} = 2m/s$$

Relative speed between coil and magnet is zero, so there is no induced emf in the coil

331 (b)

According to Lenz's law

332 (a)

$$N\phi = Li \Rightarrow L = \frac{N\phi}{i} = \frac{500 \times 4 \Rightarrow 10^{-3}}{2} = 1 \text{ henry}$$

333 (a)

$$\phi = NBA\cos\theta = 100 \times 0.2 \times 5 \times 10^{-4}\cos 60^{\circ}$$

= 5 × 10⁻³Wb

334 (a)

$$B = \frac{\mu_0 Ni}{2r} = \frac{4\pi \times 10^{-7} \times 100 \times 2 \times \sqrt{\pi}}{2 \times 10^{-2}}$$
$$= 0.022 \text{ wb/m}^2$$

335 (b)

$$e = -\frac{N(B_2 - B_1)A\cos\theta}{\Delta t}$$

$$= -\frac{500 \times (0 - 0.1) \times 100 \times 10^{-4}\cos0}{0.1} = 5V$$

336 (b)

Energy stored in inductor

$$E = \frac{1}{2}LI^2 = \frac{1}{2} \times 40 \times (2)^2 \text{mJ}$$

= 80 mJ

337 (c)

According to Fleming's right hand rule, the direction of B will be perpendicular to the plane of paper and act downward

338 (b)

$$q = \frac{N}{R} \Phi = \frac{N}{R} (BA)$$

$$\Rightarrow B = \frac{qR}{NA} = \frac{2 \times 10^{-4} \times 80}{40 \times 4 \times 10^{-4}} = 1 \text{Wbm}^{-2}$$

As the coil rotated, angle θ (angle which normal to the coil makes with \mathbf{B} at any instant t) changes, therefore magnetic flux ϕ linked with the coil changes and hence an emf is induced in the coil. At this instant t, if e is the emf induced in the coil,

$$e = -\frac{d\Phi}{dt} = -\frac{d}{dt} (NAB \cos \omega t)$$

Where N is number of turns in the coil.

or
$$e = -NAB \frac{d}{dt} (\cos \omega t)$$

= $-NAB (-\sin \omega t) \omega$

 $e = NAB\omega \sin \omega t$

The induced emf will be maximum

When $\sin \omega t = \text{maximum} = 1$

$$\therefore e_{\max} = e_0 = NAB\omega \times 1$$

 $e = e_0 \sin \omega t$

Therefore, e would be maximum, hence current is maximum (as $i_0 = e_0/R$), when $\theta = 90^\circ$, ie, normal to plane of coil is perpendicular to the field or plane of coil is parallel to magnetic field.

340 (d)

As we know
$$e = -\frac{d\phi}{dt} = -L\frac{di}{dt}$$

Work done against back e.m.f. e in time dt and current i is

$$dW = -eidt = L\frac{di}{dt}idt = Li di \Rightarrow W$$
$$= L\int_{0}^{1} i di = \frac{1}{2}Li^{2}$$

341 (b)

Efficiency of transformer is given by

$$\eta = \frac{\text{Output power}}{\text{Input power}} = \frac{E_s I_s}{E_p I_p}$$

Here, $P_{\text{output}} = 8 \text{ kW}, \eta = 90\%$

$$P_{\text{input}} = \frac{8 \times 100}{90} = \frac{80}{9} \text{ kW} = 8.89 \text{ kW}$$

342 (a)

$$e_2 = M \frac{di_1}{dt} \Rightarrow i_2 R_2 = M \frac{di_1}{dt} \Rightarrow 0.4 \times 5 = 0.5 \times \frac{di_1}{dt}$$
$$\Rightarrow \frac{di_1}{dt} = 4 \text{ A/sec}$$

343 (c)

$$q = \frac{d\phi}{R} = \frac{BA(\cos 0^{\circ} - \cos 90^{\circ})}{R}$$

$$= \frac{B\pi r^{2}(1-0)}{R} = \frac{B\pi r^{2}}{R} = \frac{2 \times 3.143 \times (10^{-1})^{2}}{0.01}$$

$$= 6.286 C = 6.3 C$$

$$\frac{N_s}{N_p} = \frac{V_s}{V_p} = \frac{22000}{220} = 100$$

When loop enters in field between the pole pieces, flux linked with the coil first increases (constantly) so a constant emf induces. When coil enters completely within the field, there is no flux change, so e = 0

When coil exists, flux linked with the coil decreases, hence again emf induces, but in opposite direction

347 (b)

Equivalent resistance of the given. Wheatstone bridge circuit (balanced) is 3Ω so total resistance in circuit is $R = 3 + 1 = 4\Omega$. The emf induced in the loop e = Bvl.

So induced current $i = \frac{e}{R} = \frac{Bvl}{R}$

$$\Rightarrow 10^{-3} = \frac{2 \times v \times (10 \times 10^{-2})}{4} \Rightarrow v = 2cm/sec$$

348 (b)

The rate of change of flux or emf induced in the coil is

$$e = -n\frac{d\phi}{dt}$$

 \therefore induced current $i = \frac{e}{Rt} = -\frac{n}{Rt} \frac{d\phi}{dt}$

Given, R' = R + 4R = 5R, $d\phi = W_2 - W_1$, dt = t. (Here, W_1 and W_2 are flux associated with one turn). 357 (b)

Putting the given values is Eq.(i), we get

$$\therefore \qquad i = -\frac{n}{5R} \frac{(W_2 - W_1)}{t}$$

350 (b)

Lenz's law of electromagnetic induction corresponds to the law of conservation of energy.

351 (c)

A metallic ring is attached with the wall of a room. When the north pole of a magnet is brought near to it, the induced current in the ring will be

352 (b)

From $i = i_0[1 - e^{-RT/L}]$, where $i_0 = \frac{5}{5} = 1$ amp $:: i = 1\left(1 - e^{\frac{-5\times 2}{10}}\right) = (1 - e^{-1})amp$

$$e = -\frac{NBA(\cos\theta_2 - \cos\theta_1)}{\Delta t}$$

$$= -\frac{800 \times 4 \times 10^{-5} \times 0.05(\cos 90^\circ - \cos 0^\circ)}{0.1}$$

$$= 0.016 V$$

354 (a)

If $\mathbf{B} = 0$ then $\phi = \mathbf{B}$. $\mathbf{A} = 0$. if $\phi = 0$ then $\phi =$

 $\mathbf{B}.\mathbf{A} = 0$, \mathbf{B} may or may not be zero because angle between B and A may be 90°.

For same part ϕ may be positive and for remaining part, it may be negative so that the resultant ϕ becomes zero but **B** is non-zero.

355 (c)

When battery is disconnected current through the circuit starts decreasing exponentially according to $i = i_0 e^{-Rt/L}$

$$\Rightarrow 0.37i_0 = i_0 e^{-Rt/L} \Rightarrow 0.37 = \frac{1}{e} = e^{-Rt/L} \Rightarrow t$$
$$= \frac{L}{R}$$

356 (a)

On moving the coils further apart initially the flux linked will reduced.

Then, according to Lenz's law current will increase in both the coils to increase the linked

$$e = \frac{d\phi}{dt} = \frac{d}{dt}(NBA) = NA\frac{dB}{dt}$$
$$= 500 \times 10^{-2} \times 1 = 5.0 \text{ V}$$

358 (c)

At low frequency of 1 to 2 Hz, oscillations may be observed as our eyes will be able to detect it

359 (b)

From Faraday's law, induced emf is

$$e = -\frac{d\phi}{dt}$$
Given, $\phi = Xt^2$

$$\therefore \qquad e = \frac{-d(Xt^2)}{dt} = -2tX$$

$$\therefore X = \frac{9}{3 \times 2} = 1.5 \text{Wbs}^{-2}$$

360 (b)

Effective length between A and B remains same

361 (d)

Induced emf,
$$|e| = L \frac{di}{dt}$$

= $(60 \times 10^{-3}) \times \frac{(1.5 - 1)}{0.1}$
= $\frac{60 \times 10^{-3} \times 0.5}{0.1}$
= 0.3 V

Induced current

$$i = \frac{e}{R} = \frac{0.3}{3} = 0.1 A$$

362 (d)

$$v = 180 \text{ kmh}^{-1} = \frac{180 \times 1000}{60 \times 60} = 50 \text{ ms}^{-1}$$

$$l = 1 \text{m}, B = 0.2 \times 10^{-4} \text{ Wbm}^{-2}$$

$$e = Blv = 002 \times 10^{-4} \times 1 \times 50 = 10^{-3} \text{V} = 1 \text{mV}$$

363 (b)

$$\phi = \mu_0 niA = 4\pi \times 10^{-7} \times \frac{3000}{1.5} \times 2$$
$$\times \pi (2 \times 10^{-2})^2$$
$$= 6.31 \times 10^{-6} Wb$$

364 (c)

Horizontal conductor intercepts vertical component = $B_0 \sin \delta$

$$e = (B_0 \sin \delta) lv$$

365 (a)

$$\phi = BA$$

 \Rightarrow change in flux $d\phi = BdA = 0.05(101 - 100)$ $100)10^{-4}$

$$= 5 \times 10^{-6} \text{Wb}$$

Now, charge
$$dQ = \frac{d\phi}{R} = \frac{5 \times 10^{-6}}{2} = 2.5 \times 10^{-6} C$$

366 (d)

During decay of current

$$i = i_0 e^{-\frac{Rt}{L}} = \frac{E}{R} e^{-\frac{Rt}{L}} = \frac{100}{100} e^{-\frac{100 \times 10^{-3}}{100 \times 10^{-3}}} = \frac{1}{e} A$$

Peak value of induced emf in a rectangular coil is $e = n BA \omega \sin \theta$

$$= 300 \times 4 \times 10^{-2} \times (25 \times 10 \times 10^{-4}) \times (2\pi \times 50) \times \sin 90^{\circ}$$

$$=30\pi V$$

368 (d)

$$M = \frac{\mu_0 N_1 \times N_2 \times A}{I}$$

Where, N_1 =300 turns, N_2 =400 turns, $A = 10 \text{cm}^2$ and l=20cm.

Substituting the values in the given formula, we

$$M = 2.4\pi \times 10^{-4} \mathrm{H}$$

$$\frac{V_p}{V_s} = \frac{i_s}{i_p} \Rightarrow i_s = 4 \times \frac{140}{280} = 2A$$

$$V_P = 220 \text{V}, V_S = 2200 \text{ V}, I_P = 5 \text{ A}, I_S = ?$$

Power loss=50%

Efficiency of transformer (η) is defined as the ratio of output power and input power.

ie,
$$\eta\% = \frac{P_{\text{out}}}{P_{\text{in}}} \times 100 = \frac{V_S I_S}{V_P I_P} \times 100$$

$$50 = \frac{2200 \times I_S}{220 \times 5} \times 100$$

$$I_S = 0.25 \text{A}$$

371 (c)

According to i - t graph, in the first half current is increasing uniformly so a constant negative emf induces in the circuit

In the second half current is decreasing uniformly so a constant positive emf induces

Hence graph (c) is correct

372 (b)

Given,
$$L = 0.04 \text{ H}$$
, $R = 12\Omega$, $V = 220 \text{ volt}$ and $f = \begin{bmatrix} 380 \text{ (d)} \\ \text{By} \end{bmatrix}$

The value of current

$$I = \frac{V}{Z}$$

Or
$$I = \frac{V}{\sqrt{R^2 + (\omega L)^2}}$$

Or
$$I = \frac{V}{\sqrt{R^2 + (2\pi f L)^2}}$$

Or
$$I = \frac{220}{\sqrt{144 + (2\pi \times 50 \times 0.04)^2}}$$

Or
$$I = 12.7 \text{ A}$$

373 (c)

 $L = \mu_0 \frac{N^2}{l} A$. When N and l are doubled L is also doubled

374 (a)

$$dQ = \frac{d\phi}{R} = \frac{nAdB}{R} = \frac{100 \times 1 \times 10^{-3} \times 2}{10}$$
$$= 2 \times 10^{-2} C$$

$$\varepsilon \propto -\frac{di}{dt}$$

If player in running with rod in vertical position towards east, then rod cuts the magnetic field of earth perpendicularly (magnetic field of earth is south to north).

Hence Maximum emf induced is

$$e = Bvl - 4 \times 10^{-5} \times \frac{30 \times 1000}{3600} \times 3$$

= $1 \times 10^{-3} \ volt$

When he is running with rod in horizontal position, no field is cut by the rod, so e = 0

377 (b)

$$|e| = A \cdot \frac{\Delta B}{\Delta t} = 2 \times \frac{(4-1)}{2} = 3V$$

378 (c)

Amplitude of the current $i_0 = \frac{e_0}{R} = \frac{\omega NBA}{R} =$

$$i_0 = \frac{2\pi \times 1 \times 10^{-2} \times \pi (0.3)^2}{\pi^2} = 6 \times 10^{-3} A$$

$$= 6mA$$

379 (b)

Magnetic induction depends upon the magnetic permeability of medium between the coils (μ_r) or nature of material on which two coils are wound.

By Fleming's right hand rule

$$\Delta \phi = L \Delta l \Rightarrow L = \frac{\Delta \phi}{\Delta I} = \frac{2 \times 10^{-2}}{0.01} = 2H$$

382 (a)

$$\phi = Li \Rightarrow NBA = Li$$

Since magnetic field at the centre of circular coil carrying current is given by $B = \frac{\mu_0}{4\pi} \cdot \frac{2\pi Ni}{r}$

$$\therefore N.\frac{\mu_0}{4\pi}.\frac{2\pi Ni}{r}.\pi r^2 = Li \Rightarrow L = \frac{\mu_0 N^2 \pi r}{2}$$

Hence self inductance of a coil

$$= \frac{4\pi \times 10^{-7} \times 500 \times 500 \times \pi \times 0.05}{2} = 25 \text{ mH}$$

384 (c)

According to Lenz's Law

385 (b)

$$P = Fv = Bil \times v = B\left(\frac{Bvl}{R}\right)l \times v = \frac{B^2v^2l^2}{R} \Rightarrow P$$

$$\propto v^2$$

386 (b)

Induced emf in the coil is given by

$$e = \frac{L \, dI}{dt}$$
Or
$$e = 10 \times \frac{(10-5)}{0.2}$$

$$\Rightarrow \qquad e = 250 \text{ V}$$

388 (b)

$$\frac{V_p}{V_s} = \frac{N_p}{N_s} = \frac{500}{2500} = \frac{1}{5} \Rightarrow V_p = \frac{200}{5} = 40 \text{ V}$$

Also $i_p V_p = i_s V_s \Rightarrow i_p = i_s \frac{V_s}{V_n} = 8 \times 5 = 40 A$

389 (b)

$$e = \frac{d\phi}{dt} = \frac{(NBA\cos\theta - 0)}{t}$$
$$= \frac{1 \times 0.5 \times 25 \times 10^{-4}\cos60^{\circ} - 0}{0.2}$$
$$e = 3.12 \times 10^{-3} \text{ V}.$$

390 (c)

As per Faraday's Law of electromagnetic

$$EMF = \frac{\text{change in flux}}{\text{time}} = \frac{8 \times 10^{-4} Wb}{0.5 \text{ sec}}$$
$$= 16 \times 10^{-4} \text{volt} = 1.6 \text{ mV}$$

393 (c)

Given;
$$\frac{N_P}{N_S} = \frac{1}{25}$$
, $V_P = 230$ V, $I_S = 2$ A

$$\frac{N_P}{N_S} = \frac{V_P}{V_S} = \frac{I_S}{I_P} \text{ or } \frac{N_P}{N_S} = \frac{I_S}{I_P}$$

$$\text{Or } I_P = I_S \times \frac{N_P}{N_S} = 2A \times \frac{25}{1} = 50A$$

Or
$$I_P = I_S \times \frac{N_P}{N_S} = 2A \times \frac{25}{1} = 50A$$

395 (a)

If in time t, the rod turns by an angle θ , the area generated by the rotation of rod will be $=\frac{1}{2}l \times$

$$l\theta = \frac{1}{2}l^2\theta$$

So the flux linked with the area generated by the

$$\phi = B\left(\frac{1}{2}l^2\theta\right)\cos 0 = \frac{1}{2}Bl^2\theta = \frac{1}{2}Bl^2\omega t$$

And so
$$e = \frac{d\phi}{dt} = \frac{d}{dt} \left(\frac{1}{2} B l^2 \omega t \right) = \frac{1}{2} B l^2 \omega$$

396 (d)

Emf is induced in the ring and it opposes the motion. Hence due to the resistance of the ring all energy dissipates

397 (b)

$$\Delta Q = \frac{NBA}{R} (\cos \theta_1 - \cos \theta_2)$$
$$= \frac{500 \times 0.2 \times 0.1 (\cos 0 - \cos 180)}{50} = 0.4 C$$

398 (c)

$$e = -L\frac{di}{dt} \Rightarrow e = 5 \times \frac{1}{5} = 1 \text{ volt}$$

399 (b)

Maximum energy stored in the capacitor

$$U_{\text{max}} = \frac{Q^2}{2C}$$

The energy is stored equally in electric and magnetic fields

So, energy in electric field

$$E = \frac{1}{2} \left(\frac{Q^2}{2C} \right)$$

Now,
$$\frac{Q'^2}{2C} = \frac{1}{2} \frac{Q^2}{2C}$$

$$\Rightarrow Q' = \frac{Q}{\sqrt{2}}$$

$$e = -M \frac{di}{dt} = -5 \times \frac{(-5)}{10^{-3}} = 25000 V$$

Energy stored in a self-inductor, $E = \frac{1}{2}Li^2$

$$=\frac{1}{2} \times 200 \times 10^{-3} [4]^2 = 1.6 \text{ J}$$

402 (d)

At B, flux is maximum, so from $|e| = \frac{d\phi}{dt}$ at B|e| =

$$L = \frac{e}{di/dt} = \frac{5}{(3-2)/10^{-3}} = \frac{5}{1} \times 10^{-3}$$
$$= 5milli\ henry$$

404 **(b)**

When ring enters and leaves the field polarity of induced emf is opposite. Also during the stay of ring completely in the field there is no induction

$$M = K\sqrt{L_1L_2}$$

For perfect coupling K = 1

$$M_{12} = M_{21}$$

406 (a)

Given, $B = 0.30 \times 10^{-4} \text{Wbm}^{-2}$, l = 10 m and v = 414 (a)

The induced potential gradient

$$V = Bvl$$

 $V = -0.30 \times 10^{-4} \times 5 \times 10$
 $V = -1.5 \times 10^{-3} \text{ Vm}^{-1}$

From west to east,

$$V = +1.5 \times 10^{-3} \text{Vm}^{-1}$$

409 (d)

Magnetic lines are tangential to the coil as shown in figure. Thus net magnetic flux passing through the coil is always zero or the induced current will be zero

410 (c)

$$e = Bvl \Rightarrow e \propto v \propto gt$$

411 (b)

$$L = \frac{e}{di/dt} = \frac{12}{48/60} = 15 H$$

412 (d)

$$E(\operatorname{across} BC) = L \frac{dI_2}{dt} + R_2 I_2$$

$$I_1 \qquad I_2 \qquad I_3$$

$$I_2 = I_0 (1 - e^{-t/t_0})$$

$$I_0 = \frac{E}{R_2} = \frac{12}{2} = 6 A$$

$$\tau = t_0 = \frac{L}{R} = \frac{400 \times 10^{-4}}{2\Omega} = 0.2 \, S$$

$$I_2 = 6(1 - e^{-t/0.2})$$

Potential drop areas $L = E - R_2 I_2$

$$= 12 - 2 \times 6(1 - e^{-t/0.2})$$

$$= 12e^{-t/0.2} = 12e^{-5t}V$$

413 (c)

$$\Rightarrow \frac{di}{dt} = 0 - i_0 \left(-\frac{R}{L} \right) e^{-\frac{Rt}{L}} = \frac{i_0 R}{L} e^{-\frac{Rt}{L}}$$

Initially, $t = 0 \Rightarrow \frac{di}{dt} = \frac{i_0 \times R}{L} = \frac{E}{L} = \frac{5}{2} = 2.5 \ amp/sec$

$$i = \frac{e}{R} = \frac{A}{R} \cdot \frac{dB}{dt} = \frac{(1 \times 10^{-2})^2}{16} \times 20 \times 10^{-3}$$
$$= 1.25 \times 10^{-7} A$$

(Anti-clockwise)

415 (b)

For 100% efficiency $V_s i_s = V_p i_p$ $\Rightarrow 1100 \times 2 = 220 \times i_p \Rightarrow i_p = 10 A$

416 (d)

Induced emf is given by

$$e = BvI \sin \theta = 0.1 \times 10 \times 4 \sin 30^\circ = 2 volt$$

417 (a)

$$e = -\frac{N(B_2 - B_1)A\cos\theta}{\Delta t}$$

$$= \frac{-50 \times (0 - 2 \times 10^{-2}) \times 100 \times 10^{-4} \times \cos 0^{\circ}}{t}$$

$$\Rightarrow t = 0.1 sec$$

420 (d)

$$L \propto N^2$$

422 (a)

$$\frac{N_s}{N_p} = \frac{V_s}{V_p} \Rightarrow \frac{200}{100} = \frac{V_s}{120} \Rightarrow V_s = 240 V$$

$$\text{Also } \frac{V_s}{V_p} = \frac{i_p}{i_s} \Rightarrow \frac{240}{120} = \frac{10}{i_s} \Rightarrow i_s = 5 A$$

$$N\phi = Li \Rightarrow \frac{Nd\phi}{dt} = \frac{Ldi}{dt} \Rightarrow NB\frac{dA}{dt} = \frac{Ldi}{dt}$$
$$\Rightarrow \frac{1 \times 1 \times 5}{10^{-3}} = L \times \left(\frac{2 - 1}{2 \times 10^{-3}}\right) \Rightarrow L = 10H$$

 $e = 200 \sin 100 \pi t$

We have,

$$e_0 = 200,$$

 $\omega = 100 \,\pi$

$$\therefore BAN\omega = e_0$$

$$B = \frac{\epsilon_0}{ANc}$$

$$= \frac{200}{(0.25 \times 0.25) \times 1000 \times 100\pi}$$

$$B = 0.01 \text{ T}$$

426 **(b)**

Or

The induction coil works on the principle of mutual induction.

428 (c)

$$\begin{split} M &= -\frac{e_2}{di_1/dt} = -\frac{e^2}{di_2/dt} \\ \text{Also } e_1 &= -L_1 \frac{di_1}{dt}. \, e_2 = -L_2 \frac{di_2}{dt} \\ M^2 &= \frac{e_1 e_2}{\left(\frac{di_1}{dt}\right) \left(\frac{di_2}{dt}\right)} = L_1 L_2 \Rightarrow M = \sqrt{L_1 L_2} \end{split}$$

429 (a)

Back emf ∝ speed of motor

431 (c)

When loop is entering in the field, magnitude flux linked with the loop increases so induced emf in it $e = Bvl = 0.6 \times 10^{-2} \times 5 \times 10^{-2} = 3 \times 10^{-4} V$ (Negative).

When loop completely enters in the field (after 5 sec) flux linked with the loop remains constant, so e = 0.

After 15 *sec*, loop begins to exist, linked magnetic flux decreases so induced emf $e = 3 \times 10^{-4} V$ (Positive)

432 (c)

Given, magnetic flux, $\phi = 5t^2 + 2t + 3$

The value of induced emf $\frac{d\phi}{dt} = 10t + 2$

At t=1

The value of induced emf $\frac{d\phi}{dt} = 12 \text{ V}$

433 (a)

 $L \propto N^2$

435 (b)

There will be self induction effect when soft iron core is inserted

436 (a)

Magnetic flux linked with the ring changes so current flows through it

439 (d)

$$V = -L\frac{di}{dt}$$
Here $\frac{di}{dt}$ +ve for $\frac{T}{2}$ time and $\frac{di}{dt}$ is -ve for next $\frac{T}{2}$ time

440 (c)

Time period of *LC* circuit oscillations $T = 2\pi\sqrt{LC} \Rightarrow$ dimensions of \sqrt{LC} is time

441 (d)

$$\begin{split} V_p &= 200 \ V, V_s = 6V \\ P_{out} &= V_s i_s \Rightarrow 30 = 6 \times i_s \Rightarrow i_s = 5 \ A \\ \text{From} \frac{V_s}{V_p} &= \frac{i_p}{i_s} \Rightarrow \frac{6}{200} = \frac{i_p}{5} \Rightarrow i_p = 0.15 \ A \end{split}$$

442 **(b)**

Two coils are said to be magnetically coupled if full or a part of the flux produced by one links with the other. Let L_1 and L_2 be the self-inductances of the coils and M be their mutual inductances, then

$$k = \frac{M}{\sqrt{L_1 L_2}}$$

When 100% flux produced by one coil links with the other, then mutual inductance between the two is maximum and is given by

$$M = \sqrt{L_1 L_2}$$

In that case, k = 1(unity)

ELECTROMAGNETIC INDUCTION

Assertion - Reasoning Type

This section contain(s) 0 questions numbered 1 to 0. Each question contains STATEMENT 1(Assertion) and STATEMENT 2(Reason). Each question has the 4 choices (a), (b), (c) and (d) out of which **ONLY ONE** is correct.

- a) Statement 1 is True, Statement 2 is True; Statement 2 is correct explanation for Statement 1
- b) Statement 1 is True, Statement 2 is True; Statement 2 is not correct explanation for Statement 1
- c) Statement 1 is True, Statement 2 is False
- d) Statement 1 is False, Statement 2 is True

1

- **Statement 1:** An electric motor will have maximum efficiency when back emf becomes equal to half of applied emf.
- Statement 2: Efficiency of electric motor depends only on magneitude of back emf.

2

- Statement 1: Lenz's law violates the principle of conservation of energy
- Statement 2: Induced e.m.f. always opposes the change in magnetic flux responsible for its production

3

- **Statement 1:** An artificial satellite with a metal surface is moving above the earth in a circular orbit. A current will be induced in satellite if the plane of the orbit is inclined to the plane of the equator
- **Statement 2:** The current will be induced only when the speed of satellite is more than 8 km/sec

4

- Statement 1: In the phenomenon of mutual induction, self induction of each of the coils persists
- **Statement 2:** Self induction arises when strength of current in same coil changes. In mutual induction, current is changing in both the individual coils

5

- **Statement 1:** When two coils are wound on each other, the mutual induction between the coils is maximum
- Statement 2: Mutual induction does not depend on the orientation of the coils

6

Statement 1: An induced emf is generated when magnet is withdrawn from the solenoid

	Statement 2:	The relative motion between magnet and solenoid induced emf
7		
	Statement 1:	The quantity L/R possesses dimensions of time
	Statement 2:	To reduce the rate of increase of current through a solenoid, we should increase the time
8		constant (L/R)
	Statement 1:	An aircraft files along the meridian, the potential at the ends of its wings will be the same
	Statement 2:	Whenever there is change in the magnetic flux e.m.f. induces
9		
	Statement 1:	The mutual inductance of two coils is doubled if the self inductance of the primary or
	Statement 2:	secondary coil is doubled. Mutual inductance is proportional to the self inductance of primary and secondary coils.
10		
	Statement 1:	Soft iron is used as a core of transformer
	Statement 2:	Area of hysteresis loop for soft iron is small
11		
	Statement 1:	A transformer cannot work on dc supply
	Statement 2:	dc changes neither in magnitude nor in direction
12		
	Statement 1:	The induced e.m.f and current will be same in two identical loops of copper and aluminium when rotated with same speed in the same magnetic field
	Statement 2:	Induced e.m.f. is proportional to rate of change of magnetic field while induced current
13		depends on resistance of wire
	Statement 1:	A metal piece and a non-metal (stone) piece are dropped from the same height near
	Statement 2:	earth's surface. Both will reach the earth's surface simultaneously There is no effect of earth's magnetic field on freely falling body
14		
	Statement 1:	Faraday's laws are consequence of conservation of energy
	Statement 2:	In a purely resistive ac circuit, the current lags behind the e.m.f. in phase
15		
	Statement 1:	Self-inductance is called the inertia of electricity
	Statement 2:	Self-inductance is the phenomenon, according to which an opposing induced e.m.f. is produced in a coil as a result of change in current or magnetic flux linked in the coil

16 Statement 1: Eddy current is produced in any metallic conductor when magnetic flux is changed around it **Statement 2:** Electric potential determines the flow of charge 17 Statement 1: A spark occurs between the poles of a switch when the switch is opened **Statement 2:** Current flowing in the conductor produces magnetic field 18 **Statement 1:** An ac generator is based on the phenomenon of self-induction Statement 2: In single coil, we consider self-induction only 19 Statement 1: Making or breaking of current in a coil produces no momentary current in a coil producers no momentary current in the neighbouring coil of another circuit. Statement 2: Momentary current in the neighbouring coil of another circuit is an eddy current. 20 Statement 1: The back emf in a dc motor is maximum when the motor has just been switched on Statement 2: When motor is switched on it has maximum speed 21 Statement 1: In electric circuits, wires carrying currents in opposite directions are often twisted **Statement 2:** If the wires are not twisted together, the combination of the wires forms a current loop. The magnetic field generated by the loop might affect adjacent circuits or components 22 Statement 1: Inductance coil are made of copper Statement 2: Induced current is more in wire having less resistance 23 Statement 1: Only a change in magnetic flux will maintain an induced current the coil Statement 2: The presence of large magnetic flux through a coil maintains a current in the coil if the circuit is continuous 24 **Statement 1:** An emf \vec{E} is induced in a closed loop where magnetic flux is varied. The induced \vec{E} is not a

conservative field

Statement 2: The line integral \vec{E} . $\vec{d}l$ around the closed loop is non zero

ELECTROMAGNETIC INDUCTION

: ANSWER KEY:

1)	c	2)	d	3)	c	4)	b 17)	b	18)	d	19)	d	20)	d
5)	c	6)	a	7)	b	8)	d 21)	c	22)	a	23)	c	24)	
		10)												
		14)					0.000							

ELECTROMAGNETIC INDUCTION

: HINTS AND SOLUTIONS :

1 (c)

Since, the efficiency of an electric motor is given by

$$\eta = \frac{\text{output power}}{\text{input power}}$$

From the above relation, it is quite clear that maximum output power corresponds maximum efficiency of motor.

Now, output power is given by

$$=e\ i=\frac{e(E-e)}{R}$$

To obtain maximum output power differentiating Eq.(i) with respect to e which will be equal to zero.

So,
$$\frac{d}{de} \left[\frac{e(E-e)}{R} \right] = 0 \implies e = \frac{E}{2}$$

Thus, when back emf becomes equal to half of the applied emf, the efficiency of motor will be maximum.

2 (d)

Lenz's Law is based on conservation of energy and induced emf always opposes the cause of it, *i. e.*, change in magnetic flux

3 (c)

When the satellite moves in inclined plane with equatorial plane (including orbit around the poles), the value of magnetic field will change both in magnitude and direction. Due to this, the magnetic flux through the satellite will change and hence induced currents will be produced in the metal of the satellite. But no current will induced if satellite orbits in the equatorial plane because the magnetic flux does not change through the metal of the satellite in this plane

4 (b)

Mutual inductance is the phenomenon according to which an opposing e.m.f. produces flux in a coil as a result of change in current or magnetic flux linked with a neighboring coil. But when two coils are inductively coupled, in addition to induced e.m.f. produced due to mutual induction, induced e.m.f. is also produced in each of the two coils due to self-induction

5 (c)

The manner in which the two coils are oriented determines the coefficient of coupling between them.

$$M = K\sqrt{L_1L_2}$$

When the two coils are wound on each other, the coefficient of coupling is maximum and hence mutual inductance between the coils is maximum

7 **(b)**

The relation of induced emf is $e = \frac{Ldi}{dt}$ and current i is given by $i = \frac{e}{R} = \frac{1}{R} \cdot \frac{L.di}{dt} \Rightarrow \frac{di}{dt} = i \frac{R}{L} = \frac{i}{L/R}$

In order to decrease the rate of increase of current through solenoid we have to increase the time constant $\frac{L}{R}$

8 (d)

As the aircraft files, magnetic flux changes through its wings due to the vertical component of the earth's magnetic field. Due to this, induced emf is produced across the wings of the aircraft. Therefore, the wings of the aircraft will not be at the same potential

9 (c)

If two coils of inductance $L_1 \mbox{and} \ L_2 \mbox{ are joined together, then their mutual includes the control of the co$

$$M = k\sqrt{L_1L_2}$$

It is clear from the relation, if self-inductances of primary and secondary coil are doubled the mutual inductance of the coils will be doubled.

10 (a)

Hysteresis loss in the core of transformer is directly proportional to the hysteresis loop area of the core material. Since soft iron has narrow hysteresis loop area, that is why soft iron core is used in the transformer

11 (a)

Transformer works on ac only, ac changes in magnitude as well as in direction

Since both the loops are identical (same area and number of turns) and moving with a same speed in same magnetic field. Therefore same emf is induced in both the coils. But the induced current will be more in the copper loop as its resistance will be lesser as compared to that of the aluminium loop

13 (d)

When a metal piece falls from a certain height then eddy currents are produced in it due to earth's magnetic field. Eddy currents oppose the motion of piece. Hence metal piece falls with a smaller acceleration (as compared to g). But no eddy currents are produced in non-metal piece. Hence it drops with acceleration due to gravity. Therefore non-metal piece will reach the earth's surface earlier

According to Faraday's laws, the conversion of mechanical energy into electrical energy is in accordance with the law of conservation of energy. It is also clearly known that in pure resistance, the emf is in phase with the current

15 (b)

Self-inductance of a coil is its property by virtue of which the coil opposes any change in the current flowing through it

16 **(b)**

When a metallic conductor is moved in a magnetic field; magnetic flux is varied. It disturbs the free electrons of the metal and sets up an induced emf in it. As there are no free ends of the metal, i. e., it will be closed in itself so there will be induced current

17 **(b)**

According to Lenz's law, induced emf are in a direction such as to attempt to maintain the original magnetic flux when a change occurs. When the switch is opened, the sudden drop in the magnetic field in the circuit induces an emf in a direction that attempts to keep the original current flowing. This can cause a spark as the current bridges the air gap between the poles of the switch. (The spark is more likely in circuits with large inductance)

18 (d)

ac generator is based on the principle of the electromagnetic induction. When a coil is rotated about an axis perpendicular to the direction of uniform magnetic field, an induced emf is produced across it

19 (d)

> Before making current in a coil, the current is zero and before breaking the current is maximum. In other words, it is constant in both the cases. Obviously on making or breaking the current in a circuit, the current starts changing magnetic field, which in turn produces induced current in the neighbouring coil of the circuit.

20 (d)

Back $emf \ e \propto \omega$. At start $\omega = 0$ so e = 0

21 (c)

If the wires are twisted together, they can be formed as a single wire carrying currents in opposite directions. In this pattern, in wires no magnetic field is induced which does not affect adjacent circuits

22 (a)

The inductance coils made of copper will have very small ohmic resistance. Due to change in magnetic flux a large induced current will be produced in such an inductance coil which will offer appreciable opposition to the flow of current

23

Presence of magnetic flux cannot produce current

24

Induced electric field is non conservative. Also

$$\oint \vec{E} \, . \, \vec{d} \, l = -\frac{d}{dt} \int \vec{E} . \, \vec{d} \, s \neq 0$$

ELECTROMAGNETIC INDUCTION

Matrix-Match Type

This section contain(s) 0 question(s). Each question contains Statements given in 2 columns which have to be matched. Statements (A, B, C, D) in **columns I** have to be matched with Statements (p, q, r, s) in **columns II**.

1. Column I gives certain situations in which a straight metallic wire of resistance R is used and column II gives some resulting effects. Match the statements in Column I with the statements in Column II

(A) A charged capacitor is connected to the ends of the wire

Column-I

- (B) The wire is moved perpendicular to its length with a constant velocity in a uniform magnetic field perpendicular to the plane of motion
- (C) The wire is placed in a constant electric field that has a direction along the length of the wire
- (D) A battery of constant emf is connected to the ends of the wire

(p) A constant current flows through the wire

Column- II

- $(q) \quad \text{Thermal energy is generated in the wire } \\$
- A constant potential difference develops between the ends of the wire
- (s) Charges of constant magnitude appear at the ends of the wire

CODES:

	Α	В	C	D
a)	q	r,s	r,s	p,q,r
b)	r,s	p,q,r	r,s	q
c)	p,q,r	r,s	q	r,s
d)	r,s	q	p,q,r	r,s

2. Match the following columns

Column-II

- (A) Dielectric ring uniformly charged
- (B) Dielectric ring uniformly charged rotating with angular velocity ω

Column-I

- (C) Constant current in ring i
- (D) $i = i_0 \cos \omega t$

CODES:

- (p) Constant electrostatic field out of system
- (q) Magnetic field strength
- (r) Electric field (induced)
- (s) Magnetic dipole moment

C D Α В a) Q,s p q,r,s q,s b) q,r,s q,s q,s c) q,r,s q,s q,s p d) q,s q,r,s q,s p

ELECTROMAGNETIC INDUCTION

: ANSWER KEY:

2)